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Abstract

In the past two years incredible observations of TeV-energy neutrinos have been made by LHC far-
forward detectors SND@LHC and FASER. These observations include the measurement of LHC for-
ward neutrino fluxes as a function of flavour, energy and rapidity, which can be used to constrain
theoretical predictions of forward hadron production in proton-proton(pp) collisions. In this work,
the FASER neutrino event yield measurements from Run 3 are used to determine the LHC forward
neutrino fluxes. This is done in a theory-agnostic manner by employing machine learning (ML) and by
exploiting the equivalence with the NNPDF framework, where parton distribution functions (PDFs)
are fitted using LHC data and ML. For the first time, the full Eν dependence on the muon neutrino
flux is constrained. This flux is compared to theoretical predictions, showing a disfavour towards the
DPMJET 2019 model. The methodology used in this work is then used for several applications includ-
ing comparing several forward hadron production models, constraining three BSM enhanced decays
of neutral mesons into neutrinos and research the possibility of an intrinsic charm component in the
proton.

Summary Popular Science

Neutrinos are incredibly abundant particles, in fact 100 billion billion neutrino fly through your body
every single second. Since the late physicist Wolfang Pauli proposed these incredibly light (neutrinos
are a million times lighter than the electron) and weak-interacting (this is why you are not noticing
anything of the 100 billion billion neutrinos) particles almost a century ago and its first detection in
1956, neutrinos have become to play an important role in several areas of physics: from astrophysics,
where neutrinos have been measured coming from the sun and supernovae, to particle physics where
they have become important assets in answering questions on the standard model and beyond the
standard model physics. Considering the fact that there are so many neutrinos, one might think it is
relatively straightforward to detect them, however, this is not the case at all. Actually, only in recent
years high-energy neutrinos have been detected at the Large Hadron Collider (LHC) at CERN. The
LHC is, as its acronym suggests, a large circular collider at CERN, Geneva. In the LHC, protons
are accelerated to almost the speed of light after which they collide and, because they have such a
high energy, produce a lot of other particles. Amongst these particles, neutrinos appear and, contrary
to charged particles, they escape the detector and the ring because the magnets in the collider are
not affecting the trajectory of these neutrinos. Only in the past 2 years a detector has been built
outside the LHC where the neutrinos are detected. One may wonder: that is great, but how can
these neutrinos be utilized to the physicists’ advantage? Using the data from the detector which
consists of the number of neutrinos measured as a function of the neutrino energy, also called the
neutrino flux, one can employ machine learning(ML) to analyse this data. Machine learning has been
a very powerful tool in particle physics to analyse data, and also in other areas of physics and beyond.
This is because ML is theory agnostic i.e. it does not assume anything about the underlying theory
and the laws of physics when analysing this data. In this work, ML techniques have been used to
analyse this new LHC data to derive the underlying physical law governing this data. These new
results are also compared to several different models predicting the neutrino flux based on the current
physical laws. Using this comparison, some models can be excluded and improved predictions have
been made for the neutrino flux. These models are describing the so-called strong force, which also
governs the structure of the proton. Since the structure of the proton is still not completely unravelled,
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putting constraints on these models describing the strong force can in turn teach us more about the
structure of the proton. The ML extraction of the neutrino flux is also helping neutrino telescopes
in detecting neutrinos, because they can help to improve predictions of the neutrino fluxes detected
by these telescopes. These telescopes are trying to detect neutrinos coming from outer space. One
example of such a neutrino telescope is called IceCube, which is trying to detect ultra-high-energy
cosmic neutrinos and is a located near the south pole deep in the ice.
All in all, this work is using neutrino measurements from the LHC and machine learning to deepen
our understanding of the strong force, refine models of proton structure, and improve the predictive
capabilities of neutrino observatories like IceCube in their quest to detect cosmic neutrinos from the
far reaches of the universe.
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“Op dit moment gaat een tipje van de sluier omhoog die over het hele leven ligt: dat ik altijd en in
alles weerloos, machteloos en vervangbaar als een atoom ben en dat alle bewustzijn, alle wil, hoop en

vrees alleen maar manifestaties zijn van het mechanisme waarvolgens de menselijke moleculen zich
bewegen in de peilloze kosmische materiedamp.”
- Willem Frederik Hermans, Nooit meer slapen.

1 Introduction
100 billion billion. This mind-boggling number is how many neutrinos pass through your body every
single second. One might conclude from this that neutrinos are all over the place and thus abundant,
which is correct. However, one would not be correct in stating that neutrinos are therefore easy to
detect in any sort of way. This is because of the properties of neutrinos, e.g. their mass is incredi-
bly small compared to the lightest standard model particles and they only interact via the so-called
weak force[1]. Because of these properties it is incredibly hard to detect neutrinos, in fact, only in
the past 2 years observations at the Large Hadron Collider (LHC) by the FASER/FASERν[2, 3] and
SND@LHC[4] experiments have been made, which heralded the beginning of collider neutrino physics
and LHC neutrinos.
These high-energy neutrinos originate from proton-proton (pp) collisions at the ATLAS Interaction
Point (IP) at the LHC. After the initial pp collision, the outgoing forward(small angle wrt beam axis)
hadrons are not affected by the LHC magnets and eventually decay into neutrinos. However, these
particles going in the forward direction are not be measured. This is why the promising Forward
Physics Facility (FPF) has been proposed, including FASERν2, which is an upgrade to the current
FASERν detector, to take full advantage of these LHC neutrinos, because it promises to measure
the particles going in the forward direction[5]. This FPF is also promising, since all the particles and
events that the several experiments will measure come for free from the pp collisions at the ATLAS IP.
It is expected that around 100,000 electron neutrinos will be measured. These events, in combination
with other measurements at the FPF will provide constraints on a variety of physical models [6]. In
the meantime, the FASER and the SND@LHC detector continue the effort of detecting LHC neutrinos
at TeV energies and its scattering rates.
One might wonder why one wants to measure these neutrinos and what insights it can offer. Because
the LHC neutrinos originate from the pp collisions at the ATLAS IP, they provide us with valuable
information on these collisions. Also, measuring these neutrinos not only provides insight into the
interactions of neutrinos at TeV energies, but also into the still not completely unravelled proton
structure and the strong force which is exerted inside the proton and described by Quantum Chro-
modynamics (QCD), or, in other words, the measurements of these neutrinos can put constraints on
several QCD models. Because the neutrino fluxes can validate predictions for forward hadron D-meson
production, they can indirectly also be used to improve predictions for the high-energy neutrino fluxes
at neutrino telescopes such as IceCube[7] and KM3NET[8]. On top of this, new kinematic regions
of the strong interaction can be explored. Figure 1.2 shows the connection between collider neutrino
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Figure 1.1. This image shows the full scope of the physical applications of the proposed Forward Physics
Facility (FPF) at the LHC. The FPF would be located 620 m downstream of the ATLAS IP and is proposed
to take advantage of particles produced from pp collisions and which fly in the forward detector [6]

.

flux measurements and QCD and astrophysics, showing an overview of all the possible applications of
neutrino flux measurements.
[9]. Figure 1.1 shows the full potential of the FPF. In light of these applications as well as to improve
predictions for the proposed FPF, this work will present how to use the recent event rate measurements
from FASER and SND@LHC, as well as measurements from the proposed FPF, to perform a theory
agnostic parametrization of the LHC forward neutrino fluxes by using feed-forward neural networks.
Theory agnosticism is important, since one should be able to compare the parametrization to existing
QCD calculations of forward particle production at the LHC, specifically from charm hadron decays.
In this work the methodology developed will be applied to the differential measurement of muon
neutrino event rates from FASER[3] to constrain for the first time the full Eν dependence of the muon
neutrino flux. The FASER collaboration performed an analysis of comparing the muon neutrino event
rate measurements to different Monte Carlo (MC) event generators of forward hadron production [3].
In this work a similar analysis will be performed by comparing the parametrised neutrino flux to
predictions of neutrino fluxes computed by several event generators. The parametrised neutrino flux
is a suitable quantity to provide constraints on theoretical models of forward hadron production at the
LHC, because it can provide unique constraints on these models using statistical compatibility. Next,
the methodology will also be used to research several physics opportunities: First of all it will be used
to discriminate between several event generators for forward hadron production. It will also be used
to fit neutrino fluxes for the FASERν experiment at run-3 (which is the current setup) and for run
4+5, which is the high luminosity era at the LHC, which provides more performance and thus in the
end more neutrino scattering event measurements. The proposed FASERν2 detector at the FPF will
also be used in this work to fit neutrino fluxes. Furthermore, the method will be used to constrain
BSM(beyond the standard model) scenarios predicting more neutrinos by so-called BSM decays of
neutral hadrons into neutrinos for both current and future detector setups. Finally, the possibility of
an intrinsic charm component in the proton(which is heavier than the proton itself) in the proton will
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be researched for the current setup and the proposed FASERν2 detector at the FPF. This possibility
would again lead to an excess of neutrinos, which would be visible in the neutrino flux. In this work,
electron and muon fluxes are considered, with the note that the methodology can also easily be applied
to tau neutrinos.

Figure 1.2. This image shows the connection between collider neutrino flux measurements and its applications
to QCD, prompt atmospheric neutrino fluxes and astrophysics[9]

.

In order to achieve the goal of accurately parametrizing the neutrino flux using Machine Learning(ML),
the equivalence between determining neutrino fluxes from neutrino scattering event rates and parton
distribution functions (PDF) from Deep Inelastic Scattering (DIS) structure functions is exploited[10,
11]. These PDFs describe the individual constituents of a proton called partons and these functions
describe the contribution of each parton species with a certain momentum fraction to the proton i.e.
the probability for a parton species to carry a certain momentum fraction of the proton[12]. These
PDFs can only be determined from experimental data, and not from a-priori theory. Figure 1.3 shows
an example of the proton PDFs. It can be seen that around x = 03(the fraction of the proton’s
momentum) the valence quarks dominate, so each of them carry around a third of the proton’s
momentum.

Figure 1.3. An example of proton PDFs. It can be seen that around x = 0.2 the valence quarks dominate,
so each of them carry around a third of the proton’s momentum. The Q2 is the energy scale and the x is the
fraction of the proton’s momentum.

Both in this work, and in the determination of PDFs from data, the data is related to the PDFs via a
convolution with a Fast Kernel(FK)-table, which encodes a theoretical description of observables[13,
14]. In the calculation of PDF fits from DIS, the FK-table contains information on partonic cross-
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sections[15]. In this thesis the event rates measured at FASER are expressed as a convolution(matrix
multiplication) between the neutrino flux and neutrino-nucleus interaction cross-section. The latter is
assumed to be reliably computed by perturbative QCD and by the Standard Model (SM).
The fitting of PDFs from DIS structure functions and data has been extensively implemented in
a framework called Neural Network Parton Distribution Function (NNPDF) which, as its acronym
suggests, determines PDFs using Machine Learning[13, 16]. In this thesis close attention is paid to
this framework and its implementation on how to fit these PDFs. This is because NNPDF provides
a robust framework in employing statistical methods and validation of the results i.e. by employing
closure tests of the results(this will be explained below).
In short, this work will present how to use event rate measurements from FASER to perform a model-
independent parametrization of the LHC forward muon neutrino fluxes by using ML techniques. Using
the framework presented in this work, several physics applications will be researched i.e. the framework
will be used to extract electron and muon neutrino fluxes for different detectors and LHC runs, several
event generators, three BSM decays and the possibility of intrinsic charm in the proton.
The thesis is structured as follows: first a theoretical framework is presented in Section 2 where DIS
scattering is explained, alongside neutrino fluxes and event rates. Also, a formal explanation of FK-
tables is presented and a more detailed explanation of the equivalence between parametrizing LHC
neutrino fluxes and determining PDFs from DIS structure functions can be found in this section.
Furthermore, the machine learning approach will be discussed here. Section 3 will be on the data used
in this work, explaining both the rough workings of an event generator, which were used to generate
data and a brief explanation of how the event rates were obtained from the FASERν experiment.
Then the framework developed in this work will be explained in great detail in Section 4. Here,
the process of building the framework will be described step-by-step and the methodology will be
validated. The section will conclude with the muon neutrino flux extracted from the recent FASER
event rate measurements. In Section 5 the framework will be used for the applications described
above. The penultimate section is on transforming this framework from code written by physicists to
a well-written python package. Finally, a summary and an outlook of this work are provided.

9



2 Theoretical framework
In this section the necessary background knowledge needed for this thesis will be explained in great
detail. First of all the DIS scattering kinematics of neutrinos at the LHC far forward detectors, such
as FASER, will be covered. The DIS variables will be related to event rate measurements, which
can in turn be related to neutrino fluxes. Furthermore, the FK-table formalism will be discussed,
which is necessary to express these relations in a numerically efficient manner, where the equivalence
with determining PDFs from DIS structure functions will be highlighted. Finally, the neural net
implementation to parametrize the neutrino flux in a theory agnostic manner will be presented.

2.1 Neutrino DIS Scattering Kinematics

At the LHC, and more specifically at the ATLAS IP, high-energy protons (ECoM = 14TeV) collide and
a high energy sea of quarks and gluons come flying out. The theory describing the structure of the
proton is QCD, because the quarks and gluons inside the proton are bound together by the strong
force. The strong force has a certain strength which can be quantified using the coupling constant
αs ∼ 1

ln(Q2) . As can be seen from this equation, the coupling constant is not constant at all and is
dependent on the momentum transfer Q2. This is called the running of the coupling constant and
it means that the strength decreases when the momentum transfer increases. As the strength of the
coupling decreases, the partons inside the proton can be considered asymptotically free, which means
they can be treated as free, point-like objects. At the interaction point at the LHC, the collisions
happen at around 14TeV, which means the energy is high enough for the partons to be considered
asymptotically free. In this region, perturbative QCD can be used to describe QCD interactions[17].
The strength of the coupling constant is high at lower energies, which means the partons are no longer
asymptotically free and are in bound states i.e. they get confined inside hadrons. This is called
hadronization which happens after the proton-proton collision has taken place. The forward hadrons
eventually decay into electron, muon and tau neutrinos [18], where these neutrinos reach the FASER
detector and react via a tungsten target. Figure 2.1 shows the journey of the forward travelling
neutrinos.

Figure 2.1. This figure shows the LHC and the ATLAS IP and FASER detector. At the ATLAS IP protons
collide where the created neutrinos travel in the forward direction, eventually arriving at the FASER detector.
Before the FASER detector there is 100 m of rock.[19]

2.1.1 DIS Neutrino Scattering

The neutrinos react with the tungsten target via a charged current DIS process, mediated by a W ±

boson.
νi(ν̄i) +N(pN)

W±

ÐÐ→ ℓ−(ℓ+) +Xh(Eh), i = e, µ, τ (charged current). (2.1.1)

This process is called DIS, because the incoming neutrino probes deep into the tungsten target, and
strikes a quark via an inelastic scattering[20]. The Feynman diagram of this process is shown in Figure
2.2.
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Figure 2.2. This Feynman diagram shows how the incoming neutrino with energy Eν react with a tungsten
target. This charged current DIS process is mediated by a W ± boson. After the collision a generic final hadronic
state with energy Eh and a lepton with energy Eℓ and scattering angle θℓ are produced. [19]

This DIS process can be described by three final-state variables: the lepton scattering angle θℓ, the
charged lepton energy Eℓ and the total energy of the final hadronic state Eh. It is assumed that
these variables can be measured with good resolution by the detectors such as FASERν. Using these
kinematic variables, the DIS variables Q2 (momentum transfer), Bjorken-x (Bjorken-x is the fraction of
the proton’s momentum carried by the struck quark) and the neutrino energy Eν , can be reconstructed
by the following equations:

Eν = Eh +Eℓ

Q2 = 4(Eh +Eℓ)Eℓ sin2 (θℓ/2) (2.1.2)

x = 4(Eh +Eℓ)Eℓ sin2 (θℓ/2)
2mN Eh

,

where mN is the nucleon mass. As one can see, the measurement of (Eℓ, θℓ, Eh) can reconstruct the
DIS variables (Eν , Q2, x). Another common, alternative and equivalent, representation of the DIS
variables are (Q2, x, y), where y is the fractional energy loss of the incoming particle and is defined as

y = Q2

2xmN Eν
[21].

2.1.2 Dependence of DIS Variables on Neutrino Rapidity

For completeness, the dependence of the neutrino rapidity on the DIS kinematics is discussed in this
section as well as the relation to the experimental setups of the FASERν and the SND@LHC detector.
The rapidity is a measure which relates the energy of the neutrino and the neutrinos momentum in the
z-direction. A difference in rapidity is Lorentz invariant, which is why it is a convenient measure[22].
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It is defined as:
yν =

1
2

ln(Eν + pν,z

Eν − pν,z
) , (2.1.3)

where the neutrino four-momentum is defined as:

pµ
ν = (Eν , p⃗ν,T, pν,z) , (2.1.4)

where the momentum in the z-component, which is aligned with the beam direction, and the transverse
component, which is perpendicular to the beam direction, are separated. In the case of massless
particles, like neutrinos, the rapidity is equal to the pseudo rapidity. The pseudo rapidity is a measure
of the angle of the neutrino with respect to the beam axis and is defined as

yν = ην = − ln(tan θν

2
) , (2.1.5)

where θν signifies the angle of the neutrino momentum relative to the beam axis[23].
The attentive reader might have noticed the four-momentum in equation 2.1.4 is not the one assumed
at the LHC where the neutrino is aligned with the line-of-sight, given by

pµ
ν = (Eν , 0⃗, pν,z = Eν) . (2.1.6)

Because of this, reconstructing the neutrino kinematics is not as easy and for example Q2 is dependent
on the neutrino rapidity. To show this, the four momenta of the initial state are (considering the CC
DIS process)

pµ
ν = (Eν , p⃗ν,T, pν,z) = (Eν , Eν sin θν , Eν cos θν) , pµ

N = (mN , 0⃗, 0) , (2.1.7)

and the momenta of the final state variables are

pµ
ℓ = (Eℓ, Eℓ sin θℓ cos ϕℓ, Eℓ sin θℓ sin ϕℓ, Eℓ cos θℓ) , pµ

h = (Eh, p⃗h,T , ph,z) . (2.1.8)

The momentum transfer is now given by

Q2 = −q2 = −(pµ
ν − pµ

ℓ )
2 = 2EνEℓ (1 − sin θν sin θℓ − cos θν cos θℓ) , (2.1.9)

which obviously depends on neutrino (pseudo) rapidity.
For line-of-sight (LoS) detectors, such as FASERν accounting for the neutrino rapidity is a small
effect. This is because it can be assumed that the transverse momentum carried by the neutrino is
much smaller than the transverse momentum carried away by the final state particles. For off-axis
detectors, such as SND@LHC this assumption cannot be made.
For the FASERν detector, the rapidity coverage is

η(max)
ν = − ln

⎛
⎝

tan θ
(max)
ν

2
⎞
⎠
≃ 8.5 , (2.1.10)

which means that this detector can detect neutrinos with rapidities ην ≳ η
(max)
ν . This corresponds to

scattering angles of θν ≲ θ
(max)
ν ≃ 4×10−4. The longitudinal and transverse components of the massless

12



neutrinos can be computed as follows:

pz = E cos θ , pT = E sin θ (2.1.11)

The transverse momentum of the neutrinos that fall within the FASERν detector acceptance is

pν
T ≲ (Emax

ν × sin θ(max)
ν ) ∼ 0.8 GeV, (2.1.12)

which shows that we can assume the transverse momentum of the neutrino is negligible compared to
the longitudinal momentum when evaluating the DIS scattering cross-section.
In conclusion, we assume that the neutrino detector can measure the neutrino rapidity ην , Eℓ, θℓ and
Eh. In this work we also assume LoS detectors, which can be used to reconstruct the events by the
DIS variables (Q2, x, Eν).The neutrino fluxes are parametrized using a single variable (Eν, Eℓ, θℓ, Eh),
and the dependence on multi-differential parametrizations i.e. including rapidity dependence in the
flux is left for future work.

2.2 Event Rate Calculations

After having discussed the DIS kinematics and variables, the following section is on the event rate
calculations and its relation to neutrino fluxes, because the goal of this work is to parametrize the
neutrino flux using event rate measurements.
Neutrino Flux The neutrino fluxes are defined as

dNνi(Eν)
dEν

, (2.2.1)

where one can see that the flux is binned in Eν , the neutrino energy. Physically, this flux signifies the
number of neutrinos passing through the detector for a given Eν i.e. in a certain neutrino energy bin
there are a certain number of neutrinos which is dependent on the detector.

Event Rate Calculations Having defined the binned neutrino flux, we want to express the number
of neutrino CC scattering events as a function of this flux. This will be expressed as a function of the
DIS variables

(x, Q2, Eν) (2.2.2)

For completeness, the event rates can also, completely analogously, be expressed in the observable
quantities

(Eh, Eℓ, θℓ) , (2.2.3)

which will be exploited in Section 5. The number of CC neutrino scattering events are binned in these
three variables and can be expressed as:

N
(νi)

int (x, Q2, Eν) ≡ N
(νi)

int (xmin ≤ x ≤ xmax, Q2
min ≤ Q2 ≤ Q2

max, Emin
ν ≤ Eν ≤ Emax

ν ) . (2.2.4)

As one can see, measuring the dependence of Eν on the number of events will provide information on
the incoming neutrino fluxes. In section 3 on the data used in the ML training, the optimal binning
of the event rates as a function of Eν will be discussed. The number of events is dependent on the
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parametrisation of the neutrino flux and the relation between the two is as follows:

N
(νi)

int (x, Q2, Eν) = ∫
Q2

max

Q2
min

dQ2∫
xmax

xmin
dx∫

E
(max)
ν

E
(min)
ν

dEνÑ
(νi)

int (x, Q2, Eν) , (2.2.5)

where the integrand is defined as:

Ñ
(νi)

int (x, Q2, Eν) ≡ nT LT ×
dNνi(Eν)

dEν
× d2σνiA(x, Q2, Eν)

dxdQ2 ×A(Eℓ, θℓ, Eh) , (2.2.6)

where

• nT and LT is the atomic density of the target material (Tungsten) and the length of the detector,
respectively.

• dNνi(Eν)

dEν
is the neutrino flux.

• The third term is the double differential DIS cross section which contains information on the
neutrino-target interactions. This is given by

d2σνiA(x, Q2, Eν)
dxdQ2 =

G2
F

4πx (1 +Q2/m2
W )

2 [Y+F
νp
2 (x, Q2) − y2F νp

L (x, Q2) + Y−xF νp
3 (x, Q2)] ,

(2.2.7)
where G2

F is the Fermi coupling constant, mW the boson mass and where Y± is defined as
1 ± (1 − y)2. The F terms in the square brackets are so-called structure functions. These
functions encode the partonic structure of hadrons and thus the partonic behaviour in the
scattering process. The neutrino DIS structure functions are given by

F νp
i (x, Q2) = ∑

j=q,q̄,g
∫

1

x

dz

z
CνN

i,j (z, αs(Q2)) f
(p)
j (x

z
, Q2) , i = 2, 3, L, (2.2.8)

where f
(p)
j (x

z , Q2) is the process-independent proton PDF mentioned in the introduction and
CνN

i,j (z, αs(Q2)) are the partonic coefficient functions. These coefficient functions are process
dependent and describe the probability amplitude for each parton species to contribute to the
structure function.[21]
The double-differential DIS cross section in this work is computed up to next-to-leading-order
(NLO) in QCD using the event generator POWHEG and the parton shower (PS) PYTHIA8,
which together model the neutrino scatterings.

• A(Eℓ, θℓ, Eh) is an acceptance factor modelling the acceptance region of the detector by imposing
step functions. This term is evaluated by a Monte Carlo (MC) simulation, which will be explained
in more detail below.

• The event rate measurements also depend on the integrated luminosity L of the pp collisions at
the ATLAS IP. This is expressed in inverse femtobar(fb−1) or inverse attobar(ab−1). A higher
integrated luminosity means more scattering events. Currently, the integrated luminosity for
LHC Run-3 is 150 fb−1 and will be 3 ab−1 in the future in the so-called high luminosity era.

The double differential cross section and the acceptance factor can be combined into one, because they

are both evaluated by the event generator. The combined term is denoted by d2σ
νiA

NLO+PS(x,Q2,Eν)

dxdQ2

RRRRRRRRRRRfid

,
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where fid stands for the fiducial volume of the detector.

Binning of Events As mentioned above, the event rates are binned in three kinematic variables.
Since the dependence of the DIS cross-section on x and Q2 is assumed to be well-described by QCD
the binned event rates will be given by

N
(νi)

int (Eν , yν) ≡ N
(νi)

int (E
(min)
ν ≤ Eν ≤ E(max)

ν ) , (2.2.9)

and the integral now looks like

N
(νi)

int (Eν) = ∫
E
(max)
ν

E
(min)
ν

dEν ,∫
2mN Eν

Q2
0

dQ2∫
1

Q2/2mN Eν

dxÑ
(νi)

int (x, Q2, Eν) , (2.2.10)

where x and Q2 are integrated over their kinematically allowed region. The optimal binning for the
event rates depends on event statistics and the acceptance region of the detector. In Section 3 the
specific choice of binning and the binning criteria are explained. The event rates in this equation are
expressed as a function of Eν , however, as mentioned above, they can also be expressed as a function
of the (Eh, Eℓ, θℓ) kinematic variables.
As mentioned before, the goal of this work is to parametrize the neutrino flux using machine learning
and training on event rate measurements. As one can see from the aforementioned equations, these
two are related via a triple convolution. When using ML to parametrize the neutrino flux, one guesses
a new shape for the flux at every iteration, thus having to perform these integrals and evaluating
the DIS differential cross-section at each iteration. This is very time consuming and computationally
expensive, since a ML training can easily comprise of a 1000 iterations. To shape a picture as to how
time-consuming this task would be: evaluating the DIS and integral would take around a minute, thus
one would have to wait ∼ 16 hours to train a simple neural network. Since this is not feasible, the
computationally efficient solution to this problem, called the FK-table formalism, will be explained
below.

2.3 Fast Kernel-Table Formalism

The underlying idea of the FK-table formalism is to replace the three integrals(convolutions) in equa-
tion 2.2.10 by a single matrix to massively increase the computational efficiency of parametrizing the
neutrino flux using ML. This matrix, stored in a precomputed fast interpolation table, will encapsu-
late the DIS cross section, acceptance factors and the binning. As mentioned in the introduction, this
approach is equivalent to determining PDFs from DIS structure functions[24].
FK-tables in NNPDF The underlying idea in the NNPDF framework is to determine PDFs from
double-differential cross sections, which are defined in terms of structure functions, which can be seen
in equation 2.2.7. Starting from equation 2.2.8, the F2 structure function can be expressed as:

F2(x, Q2) =
nf

∑
i,j

Ci(x, Q2) ⊗ Γij(Q2, Q2
0) ⊗ fj(x, Q0), (2.3.1)

where the ⊗ replaced the integral and is called a Mellin convolution. Γij(Q2, Q2
0) is an evolution op-

erator, which evolves the PDF from scale Q2
0 to Q2. The F2 structure function is one of the observables

that NNPDF uses to fit PDFs[13]. At each iteration the so-called Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) evolution equations have to be solved to evolve the PDF from Q2

0 to Q2 and the convolution
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also has to be solved at every iteration[13, 25]. As explained above, this is not feasible. This is why
the coefficient functions and the evolution operator are precomputed and stored in an interpolation
basis. The PDF can be expressed in an interpolation basis such as

fi(x, Q2) = ∑
β

∑
τ

fi(xβQ2
τ)Iβ(x)Iτ(Q2), (2.3.2)

where Iβ are the interpolating functions and xβ and Q2
τ make up the new interpolation grid and are

called grid nodes. Using this, the PDF evaluated at Q2
0 can be related to this interpolated PDF using

the evolution operator Γ in the following way:

fi,βτ = ∑
j
∑
α

Γτ
ij,αβfj(xα, Q2

0). (2.3.3)

Now, the coefficient functions and the interpolation operator can be put into a precomputed grid:

FKi,α (x, xα, Q2, Q2
0) = Ci(x, Q2)∑

β,τ

∑
j

Γτ
ij,αβIβ(x)Iτ(Q2), (2.3.4)

and the F2 structure function is then given by

F2(x, Q2) =
nf

∑
i

nx

∑
α

FKi,α (x, xα, Q2, Q2
0) fi(x, Q2

0). (2.3.5)

As can be seen the convolutions are replaced by matrix multiplications, thus drastically increasing
computational efficiency[15],[26]. This is the underlying idea. Now, the specific implementation of this
framework and idea will be worked out for the case of event rate measurements and parametrizing the
neutrino flux.

Example of an Interpolation To make sure one properly understands the interpolation a concrete
example will be given.
Suppose one wants to interpolate the function f(x) = sin(x) one has to go through 3 steps

1. Compute function values.
In this case f(0) = 0, f(π/4) =

√
(2)/2, f(π/2) = 1

2. Compute the basis polynomials.
In this case the Lagrange polynomials are used which are given by:

Iα(z) = Lα(z) =
nx

∏
β=1
β≠α

z − zj

zi − zj
. (2.3.6)

Where the first polynomial is given by: L0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

= (x−π/4)(x−π/2)
π2/8 and similarly

L1(x) = 16x(x−π/2)
π2 , L1(x) = x(x−π/4)

π2/8

3. Constructing the interpolating polynomial.
The polynomial is given by:

f(x) ≈ f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x) =
√

2/2 ∗L1(x) +L2(x). (2.3.7)

It can be seen that the function is evaluated at the grid nodes 0, π/4, π/2 i.e. an array of constant
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Figure 2.3. This figure shows electron and muon neutrino PDFs fνi(xν) for different FASER detector geome-
tries.

values and the x dependence has been moved to the Lagrange polynomials.

FK-tables in This Work. In this work the FK-table will store the DIS cross-section, the accep-
tance factors and the binning in a precomputed grid and the integrals will be replaced by a matrix
multiplication. In order to arrive at this result, let me first define the ’neutrino PDF’ as

fνi(xν) =
spp

2
dNνi(Eν)

dEν
, i = e, ν, τ, (2.3.8)

where xν is the momentum fraction and is defined as

xν =
2Eν

spp
, 0 ≤ xν ≤ 1, (2.3.9)

where spp is the maximal center-of-mass energy at which the neutrinos could have been produced,
which is equal to 13.6TeV for Run-3. This neutrino PDF is the normalised version of the neutrino
flux[21]. Figure 2.3 shows muon and anti-muon neutrino PDFs for several FASER experiments to one
an idea of what we are dealing with. The muon neutrino PDF is higher than the electron neutrino
PDF. This is because there are more hadrons after hadronization decaying into muon neutrinos than
into electron neutrinos. Muon neutrinos are produced from pion and kaon decays, electron neutrinos
from charmed hadron decays. Since the first decay mechanism is much more likely to happen than
the latter decay mechanism, the muon neutrino flux is higher compared to the electron neutrino
flux. The tau neutrinos are solely produced from heavy hadron decays, which makes tau neutrinos
quite rare. The name and definition of the neutrino PDF is, of course, derived from the problem of
determining PDFs from DIS cross-sections. As can be seen from this equation and equation 7.2.4, also
the neutrino PDF is dependent on the DIS cross-section, thus once again confirming the equivalence.
Also the momentum fraction is defined in equivalence with PDFs as can be seen in equation 2.2.8. As
is the case with PDFs, neutrino PDFs are also formatted in the LHAPDF framework, which stores
the dependence of PDFs on energy and rapidity [27]. Both neutrino PDF and neutrino flux will be
used throughout this work, they both refer to equation 2.3.8.
Now, the neutrino interaction event rates can be expressed in terms of this neutrino PDF

N̂
(νi)

int (x, Q2, Eν) ≡ nT LT ×
2
√

spp
fνi(xν) ×

d2σνiA
NLO+PS(x, Q2, Eν)

dxdQ2

RRRRRRRRRRRfid

. (2.3.10)
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As explained above, the PDF, in this case the neutrino PDF, is expressed in terms of a linear expansion
in an interpolation basis {Iα(x)}:

fνi(xν) ≃
nx

∑
α=1

fνi(xν,α)Iα(xν) , (2.3.11)

where xν,α are the grid nodes and nx the number of grid nodes. One can choose several interpolation
bases depending on the specific problem at hand. In this work the Lagrange polynomials are chosen,
where the basis polynomials are given by

Iα(z) = Lα(z) =
nx

∏
β=1
β≠α

z − zj

zi − zj
. (2.3.12)

So, for each node there is a specific polynomial interpolating the value of the nuetrino PDF on that
grid node. Now the interpolated neutrino PDF 2.3.11 is plugged into equation 2.3.10, yielding

N̂
(νi)

int (x, Q2, Eν) = nT LT ×
2
√

spp
(

nx

∑
α=1

fνi(xν,α)Iα(xν)) ×
d2σνiA

NLO+PS(x, Q2, Eν)
dxdQ2

RRRRRRRRRRRfid

(2.3.13)

= nT LT ×
nx

∑
α=1

fνi(xν,α) ×
2
√

spp
Iα(xν) ×

d2σνiA
NLO+PS(x, Q2, Eν)

dxdQ2

RRRRRRRRRRRfid

.

To show how the integrals are replaced by a matrix multiplication, equation 2.3.13 is plugged into
equation 7.2.3, yielding:

N
(νi)

int (Eν) = ∫
E(max)

ν

E
(min)
ν

dEν ∫
2mN Eν

Q2
0=1 GeV2

dQ2 ∫
1

Q2/2mN Eν

dx

⎡⎢⎢⎢⎢⎣
nT LT ×

nx

∑
α=1

fνi(xν,α) ×
2
√

spp
Iα(xν) ×

d2σνiA
NLO+PS(x, Q2, Eν)

dxdQ2

RRRRRRRRRRRfid

⎤⎥⎥⎥⎥⎦
.

Now, one has to realise that the neutrino PDF is evaluated at fixed grid nodes {fνi(xν,α)}, thus it
has become an array of constant values and can thus be moved outside of the integral. Because of
this, the neutrino interaction event rates can be expressed as

N
(νi)

int (Eν) =
nx

∑
α=1

fνi(xν,α)∫
E(max)

ν

E
(min)
ν

dEν ∫
2mN Eν

Q2
0=1 GeV2

dQ2 ∫
1

Q2/2mN Eν

dx

⎡⎢⎢⎢⎢⎣
nT LT ×

2
√

spp
Iα(xν) ×

d2σνiA
NLO+PS(x, Q2, Eν)

dxdQ2

RRRRRRRRRRRfid

⎤⎥⎥⎥⎥⎦
,

where the neutrino PDF has been moved in front of the integral and has been replaced by the
interpolation basis functions {Iα(xν)}. Now, it is finally time to define the FK-table as

FKα,j ≡
2nT LT√

spp
∫

E
(max)
ν,j

E
(min)
ν,j

dEν ∫
2mN Eν

Q2
0

dQ2∫
1

Q2/2mN Eν

dx

⎡⎢⎢⎢⎢⎣
Iα(xν)

d2σνiA
NLO+PS(x, Q2, Eν)

dxdQ2

RRRRRRRRRRRfid

⎤⎥⎥⎥⎥⎦
(2.3.14)

This FK-table is precomputed and only has to be computed once, and not for every iteration. This
object is a 2 dimensional matrix, where one axis is labelled by the neutrino energy bin, and the other
axis is labelled by the grid nodes. The event rates can now be expressed as a matrix multiplication
between this FK-table and the neutrino PDF evaluated at the grid nodes:

N
(νi)

int (Eν,j) =
nx

∑
α=1

fνi(xν,α)FKα,j , j = 1, . . . , nEν . (2.3.15)

As one can see, instead of evaluating 3 integrals at every iteration only one matrix multiplication
has to be performed. This of course greatly increases the computational efficiency when performing
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⋅

FK-table

Figure 2.4. This is a visual representation of increasing computational efficiency in the ML fit. The triple
integrals are replaced by a matrix multiplication by expressing the neutrino PDF in an interpolation basis. The
matrix contains all fixed information i.e. DIS cross-section etc and the neutrino PDF has become an array of
constant values.

a ML fit. Figure 2.4 provides a visual representation of how the increase in computational efficiency
is achieved. In this derivation the event rates and the FK-table were expressed as a function of Eν .
This derivation can also easily be computed for the (Eh, Eℓ, θℓ) kinematic quantities, this is important
since the event rates and FK-tables will also be expressed in terms of these quantities, which will
also be used for parametrizing neutrino fluxes. The FK-tables are in principle also dependent on the
neutrino flavour, however the mass of the outgoing leptons is much smaller than the cut imposed on
the lepton energy i.e. 0.5MeV compared to 100GeV for electrons. This effect is neglected, thus the
same FK-table is used to fit electron and muon neutrinos.

2.4 Neural Net Parametrization

Now the problem of computational inefficiency has been solved, the focus can be moved to parametriz-
ing the neutrino PDF using ML. More specifically, we want to research how accurately the neutrino
PDF can be parametrized. As mentioned before, close attention will be paid to the NNPDF frame-
work, because of the equivalence between parametrizing neutrino PDFs and fitting PDFs from cross
sections. The neutrino PDF will be parametrized as follows:

fνi(xν) = xai
ν (1 − xν)biNNνi(xν) , (2.4.1)

1. where xai
ν (1−xν)bi is a preprocessing function. This preprocessing function is designed to enforce

the correct asymptotic behaviour of the neutrino PDF in small and large-x regions where there is
little to no data[28] and helps to ensure a smooth and stable parametrization. The preprocessing
function also facilitates the learning to decrease the computational load of the neural network.
The preprocessing parameters are learned at the same time as the NN parameters.

2. NNνi(xν) is the neural network. There are many types of neural networks, for example convo-
lutional NNs used in computer vision and variational autoencoders used to generate new data
based on seen data. In this work a simple multi layer perceptron(MLP) is used[29]. Graphically
it looks like figure 2.5. Most basically, a neural network maps an input to an output. A neural
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Figure 2.5. A graphical representation of a simple multi layer perceptron with size (3,4,4,4,1).

network consists of several layers: an input layer, hidden layers and an output layer. Every layer
consists of a number of neurons or nodes. Each layer consists of weights and passes through an
activation function. These weights are trained to best map the input to the output. The network
learns by comparing its output to data, after which it computes a loss and adjusts the weights
using stochastic gradient descent. This is called backpropagation. This process is repeated until
the network correctly learns to map the input to a certain output. In this work the loss is defined
as:

χ2 =
Ndat

∑
i,j

(D − P )iC−1
ij (D − P )j , (2.4.2)

where D is the data, P the prediction made by the NN convoluted with the FK-table according
to equation 2.3.15, and C the covariance matrix containing the correlations between data points
and errors on data points. Contrary to the mean squared error loss, this loss optimizes the entire
data range, because the the differences between D and P are multiplied by the inverse covariance
matrix. For example, the difference between 10 and 5 is much smaller than the difference between
300 and 200, however, this loss makes sure that the NN pays almost equal amounts of attention
to both differences because they are divided by the uncertainties of the data. By dividing the
differences by the uncertainties on the data (covariance matrix), the loss becomes a relative one,
or statistically meaningful, instead of an absolute one, which is for example the case for the
mean squared error loss. The entire ML architecture can be seen in Figure 2.6. As is the case
for ML models, there are hyperparameters which configure how the model is trained and set-up.
Examples of hyperparameters are

• number of layers

• the number of nodes per layer

• the learning rate i.e. the step size taken in the direction of minimizing the error

• the optimizer: usually stochastic gradient descent, called Adam

• the activation function transforms its input and it is an important part of a NN, because
it introduces non-linearities into the network enabling it to fit highly non-trivial functions.

• the number of iterations

In this work the (anti-) neutrino fluxes, and its anti-neutrinos are parametrized and trained by the
same neural network, because this is convenient for the FASER event rate measurements. In this case
there is one input neuron, namely the grid nodes, and two output layers, the neutrino and anti-neutrino
flux. Fluxes for different neutrino flavours are trained in separate models.
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Figure 2.6. A graphical representation of the entire ML architecture used in this work. The grid nodes xν,α are
put into the MLP and into the preprocessing function. The outcome of the NN and the preprocessing function
are then multiplied and convoluted with the FK-table. The event rates are then put into the loss together with
the data and the model continues training.

3 Data
In order to train a NN one of course needs data. In this work there are two sources of data: mea-
surements by the FASER experiment and pseudo data created by several MC event generators. In
this section, details of how the data is gathered will be explained. The POWHEG and PYTHIA8 frame-
works will be explained in detail here, because both the FK-tables and events are generated using
POWHEG+PYTHIA, even though also other event generators are used in this work. In Section 5, the other
event generators used will be briefly explained. The explanation on POWHEG will also in part apply to
the other generators, since there is overlap in methodology between generators.

3.1 POWHEG + PYTHIA8

Event generators and validation Before one can think about parametrising the neutrino flux
using event rate measurements from FASER, the model needs to be tested and validated. This is where
pseudo data comes along and saves the day, because it can generate both FK-tables and event rates.
Using pseudo data one can validate the model and test if it is showing correct and physical behaviour.
In the previous academic year, two master students, which also were under the supervision of Juan
Rojo, integrated neutrino PDFs in the POWHEG-BOX-RES framework[21]. This framework implements
neutrino DIS scattering and produces NLO predictions matched to PYTHIA8[30]. It can produce pre-
dictions for final-state distributions within detector acceptance (the FASER experiment for example).
By generating events using the fiducial region of the FASER experiment and using the neutrino fluxes
simulated in [31], which is the number of neutrinos passing through the FASER detector, the ML model
presented in this work can be validated. This is because the result of the parametrization can directly
be compared to the simulated neutrino PDF, since the event rate data is computed using this same
neutrino PDF. In this section, the rough workings of the POWHEG+PYTHIA frameworks will be explained.

Brief Overview POWHEG + PYTHIA At the very core POWHEG is an MC event generator using collinear
factorization to generate events. It was created to model hadron-hadron collisions at the LHC[32, 33,
34, 35]. An extension of this framework called POWHEG DIS was created to simulate DIS processes.
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Figure 3.1. A graphical representation of the stages of the MC event generator simulating a pp collision.
The pink line is the underlying event, green the jets and blue the hadronization. The latter two processes are
simulated by PYTHIA.[38]

This framework also includes the process considered in this work and described in Figure 2.2. The
starting point to generate events is the POWHEG cross section. This cross section is a sum of Born cross
sections (the probability for a reaction to occur when 2 particles collide), integrated over phase space
and summed over all partonic channels. This cross section can be computed in LO and NLO, the
difference being that extra radiative emissions are also taken into account at NLO. Then it simulates
an event by splitting the physical process into several stages iteratively to construct a more and more
complex final state. After it has generated events, it is showered by PYHTIA8 [36]. The role of the
parton shower is to describe the describe the jets in DIS up to hadronization, because in the scattering
process described in figure 2.2 several jets occur. Jets are narrow cones of hadrons and can also contain
a substructures[37]. Figure 3.1 shows the several stages of an MC event generator simulating a pp
collision, where PYHTIA models the green (jets)and blue parts(hadronization) and POWHEG the other
stages. In this work, only NLO computations are considered.
Uncertainty There are two sources of uncertainty for pseudo data:

• Systematic uncertainty: The POWHEG framework provides theoretical uncertainties on the observ-
ables and the number of events. This is done by running the code with different renormalisation
and factorisation scales independently. By varying these scales a maximum and a minimum
value of the number of events is computed, which are used as error bands. The uncertainty on
NLO results is expected to lie inside the error bands on LO results[39].

• Statistical uncertainty: Besides this theoretical uncertainty, there is also a statistical error on
the number events computed by the usual

√
Nint. In this work only the statistical uncertainty

will be taken into account, since the systematic uncertainty is negligible in comparison.

Acceptance Cuts and Simulation Settings In order to take the kinematic acceptance region
of the detector into account, acceptance cuts are imposed in the code, which is given by the factor
A(Eℓ, θℓ, Eh) in equation 2.2.6 and included in the fiducial volume in equation 2.3.10. By impos-
ing these cuts one can model the event yield for several different detector geometries, for example
FASERν2 and FASERν by incorporating them in the generated neutrino PDF[21]. Concerning ac-
ceptance cuts, the cut Qmin = 2GeV is imposed, which is a standard DIS cut to ensure that one stays
in the perturbative QCD region. This cut has little effect on the physics, since there are (almost) no
events below this scale. Also cuts to the final-state variables are applied: Eℓ > 100 GeV, ntracks ≥ 5,
and ∆ϕ > π/2. ntr is the number of charged tracks i.e. the number of charged particles which have an
energy above 2 GeV. ∆ϕ is the angle between the lepton and the hadronic system after the scattering.
Also, the following physical parameters are used:
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GF = 1.16637 × 10−5 GeV−2 mW = 80.385 GeV mZ = 91.1876 GeV
∣Vud∣ = 0.97383 ∣Vus∣ = 0.2272 ∣Vcd∣ = 0.2271
∣Vcs∣ = 0.975 ∣Vcb∣ = 42.21 × 10−3 ∣Vub∣ = 3.96 × 10−3

∣Vtd∣ = 8.14 × 10−3 ∣Vts∣ = 41.61 × 10−3 ∣Vtb∣ = 0.9991
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Figure 3.2. The number of events generated by POWHEG + PYTHIA for the electron neutrino as a function of
the neutrino energy. Both LO and NLO is shown. The error bands are theoretical errors and the error bars are
statistical errors. In the right plot, some of the bins in low- and high-Eν are combined to make sure there are
enough statistics in these regions.

Rebinning of Events When running POWHEG+PYTHIA, one can specify the binning of the events i.e.
the binwidth of the kinematic variables. After running the code, a histogram shown in Figure 3.2 is
created by reading the event files. As can be seen from the figure, the number of events drop off quite
quickly at high neutrino energies. As mentioned above, the statistical errors scales with

√
N , thus

the relative statistical error drastically increases when there are only a handful of events in a bin, or
even less. This effect should be dampened considerably, because we want to accurately parametrize
the neutrino flux and thus need enough statistics. This is where rebinning enters the stage and saves
us from the demon of not having enough statistics. The idea of rebinning is to increase the binwidth
and thus increasing the number of events in a bin. As a rule of thumb, at least 20 events per bin
is imposed, because then a Poisonnian distribution can be approximated by a Gaussian distribution.
The rebinning of events can be seen in Figure 3.2.
Pseudo data in this work In this work pseudo data will be simulated for several different MC event
generators, detector geometries and detector observables, more on this in Section 5. The FK-tables will
be different for the several kinematic observables and the fluxes will incorporate the detector geometry
and the effects of the different MC generators. The event rates will be computed by convoluting the
fluxes with their respective FK-tables, where the fluxes are thus generated by the different event
generators, such as POWHEG.

3.2 Data from FASER(ν)

FASERν Detector The main goal of this work is to parametrise the neutrino flux using FASER
event rate measurements. In this section the experimental setup of the FASER(ν) experiment will
be discussed in order for the reader to get an idea as to how the cross sections and event rates are
measured. The ForwArd Search ExpeRiment, or FASER for short, is a detector designed to measure
light and weakly-interacting particles that escape the ATLAS detector and fly in the forward direction.
The experiment is located about 480m from the ATLAS interaction point and is close to or in the
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Figure 3.3. A sketch of the setup of the FASER(ν) detector. The FASERν emulsion detector is placed all the
way at the beginning and the FASER detector is behind the emulsion detector.[40]

centre of the neutrino beam, thereby maximizing the event rate maesurements. The sub-detector
FASERν is designed to detect all neutrino flavours. After travelling through stone and concrete where
the particles are not interacting, they arrive at the detector where they decay into visible particles
[40]. In figure 3.3 a sketch of the several parts of the detector are shown. The FASERν detector
consists of tungsten plates alternated with emulsion films. In total there is 1.1 tonnes of tungsten in
the detector. Here, neutrinos interact with the tungsten material via the CC DIS process described
in section 1, where the emulsion films track the trajectories of the charged particles being created.
These emulsion films can distinguish different lepton flavours, measure the momenta of hadrons and
estimate the energy of the neutrinos. The tungsten target is chosen, amongst lots of other reasons,
which are highlighted in [40], because of its high interaction rate whilst keeping the size of the detector
small and thus manageable. In the end the emulsions will be analysed by a readout system in order
to perform an event analysis. In order to get a proper and full grasp of the detailed workings of the
detector, one might read [40], where every aspect of the detector is explained in thorough fashion.
Event Rate Measurements In December 2024 the FASER collaboration published a paper where
they presented measurements of muon neutrino cross sections and the muon flux for the first time at
the LHC[41]. The muon neutrinos were measured as a function of the neutrino energy and observed
using an electronic detector which is located behind FASERν (FASER is an electronic detector) and
was used as a spectrometer for muons produced in the neutrino interactions. Figure 3.4 shows the
number of (anti-)muon neutrino interactions, including uncertainties and the simulated number of
events. The binning was chosen such that there is a distinction between neutrinos and anti-neutrinos,
and it was also chosen such that there is a comparable number of events in a bin. These measurements
were conducted in 2022 and 2023 during run-3 of the LHC. The integrated luminosity is 65.6 fb−1. In
total, they observed:

nν,obs = 338.1 ± 19.0(stat) ± 8.8(sys) (3.2.1)

events. The FASER collaboration also provided a covariance matrix, including correlations between
the datapoints, which will be used to compute the loss defined in equation 2.4.2. Using these event
rate measurements from FASER a model-independent parametrisation of the neutrino flux will be
performed.
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Figure 3.4. The unfolded(including background events) number of (anti-) muon neutrino interactions (black
dots) compared to simulations (histogram). The error bars include both the statistical and systematic errors.
The last bin has a width of 868.2 GeV and contains both muon and anti-muon neutrinos because from 1TeV the
charge identification accuracy significantly decreases, thus one cannot distinguish the neutrinos coming from
muons or anti-muons.

4 Numerical Framework
This section will describe all of the features, algorithms and numerical implementations used in this
work alongside the several fits which were obtained using these implementations. First of all, the MC
approach behind NNPDF closure tests will be explained. Second of all, the analysis machinery will
be tested by carrying out two non-ML fits to see how well the uncertainties of the neutrino flux can
be constrained. Also, the neural net machinery will be tested by directly fitting to the number of
events i.e. without a convolution between the neutrino flux and the FK-table. Next, the complete
numerical implementation of parametrising the neutrino flux using the NN will be presented. Finally,
the neutrino PDF parametrised using FASER event rate measurements will be shown. All neutrino
PDFs shown in these regions are muon neutrino PDFs and all the data shown are muon neutrino
scattering events.

4.1 Implementation and Validation of FK-table Formalism

As was explained below, the neutrino PDF can be expressed in terms of a linear expansion in an
interpolation basis:

fνi(xν) =
nx

∑
α=1

fνi(xν,α)Iα(xν) , (4.1.1)

where the grid nodes(in neutrino momentum fraction) are given by

xν,α ∈ {xα ∣ 0 < xα ≤ 1, α = 1 . . . nxν} . (4.1.2)

In this work the grid in xν,α is divided in blocks:

B = [α − ⌊n/2⌋, α + ⌊(n − 1)/2⌋] , (4.1.3)

of size n. This interpolation approach was presented in the EKO DGLAP evolution package [14]. In
this work 50 nodes are used for the interpolation, which is, as shown below, enough to reproduce the
POWHEG+PYTHIA calculations within 1%. Using this division of xν into blocks, the Lagrange interpola-
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tion polynomial is given by

Iα(xν) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
i≠α
i∈B

xν − xi

xα − xi
for xminj∈B

≤ xν ≤ xmaxj∈B

0 else
(4.1.4)

where the interpolation polynomial is only non-zero in regions where xν is close to the node α, which
is numerically and computationally advantageous. In this work Lagrange polynomials are chosen to
ensure numerical stability of the results. Figure 4.1 shows FK-table formalism is working, since the
FK-table convoluted by neutrino PDF is within 2% of the POWHEG calculations in regions where there
are enough statistics..
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Figure 4.1. Comparison between the original NLO POWHEG simulation of neutrino event yields at FASERν
(for Lpp = 150 fb−1) as a function of Eν , with its counterpart based on the fast grid FK-table interpolation. The
bottom panels display the ratio of the interpolated calculation with respect to the POWHEG result, showing
that their differences are at the 2% level at most. The ratio in the low Eν region increases due to low statistics.

4.2 Computing Uncertainties: NNPDF Closure Tests and MC replicas

In this work we want to accurately parametrise the neutrino flux. In order to have a sense of the
accuracy of the flux, one has to compute the uncertainties fluxes parametrized using the NN. In the
NNPDF framework a Monte Carlo approach has been developed to compute the uncertainties on ML
fits. This is done by several so-called levels of closure tests. The rationale behind this idea is to
generate MC replicas of the data by adding Gaussian fluctuations on top of the data. These replicas
are then fitted using the NN, after which the mean and the error is computed using these several
neutrino PDFs coming out of the fits[42]. In the NNPDF framework there are 3 levels of data:

• Level 0 data: this data is the raw data, and if one would try to fit a function to this data, one
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would expect perfect agreement. The notation of level 0 data is as follows:

D(0) = N
(νi)

int (Eν,j), (4.2.1)

i.e. level 0 data is equal to the event rates from the event generator or from FASER measure-
ments. For pseudo data, a level 0 closure test should produce a χ2 which is numerically zero
and can be used to test the performance and correct behaviour of the fitting code. For event
rate measurements, level-0 data should not produce a χ2 of 0, because measurements inherently
include fluctuations, and do not correspond to the central value, as is the case with simulated
data.

• Level 1 data: this is where one adds a first layer of Monte Carlo fluctuations:

D
(1)
I =D(0) + rstat

I σ
(stat)
I + rsys

I σ
(sys)
I (4.2.2)

where I is a certain instance of the data, σ
(stat)
I and σ

(sys)
I are the statistical and systematic

uncertainty of the data and rstat
I , rsys

I are the corresponding Gaussian random numbers. Each
datapoint has its own random number and one can create several instances of level 1 data. Each
of these fluctuations is called a replica.

For event rate measurements from FASER, level-1 data does correspond to MC replicas, because
the measurements from the experiment inherently include fluctuations and do not correspond
to central values. However, for pseudo data, a level-1 closure test will underestimate the uncer-
tainties of the data. This is because the event rates from the MC generators correspond to the
central value and a level-1 closure test will underestimate the uncertainties of the data, because
the fit is performed on the same underlying data i.e. no Monte Carlo replicas are computed
using equation 4.2.2.

• Level 2 data: Using level 1 data, Nrep Monte Carlo replicas are constructed by adding another
level of Gaussian fluctuations to the level 1 data:

D2,k
I =D1

I + rstat,k
I σ

(stat)
I + rsys,k

I σ
(sys)
I . (4.2.3)

When using data from FASER, a level-1 closure fit is performed, and for the pseudo data a
level-2 closure fit is performed. Now, one fits the ML model to every replica to construct a
probability density in the space of ML models by computing the MC error.

By creating Nrep replicas, one will reproduce the uncertainties and correlations from the (experimental)
covariance matrix. Each of these replicas will then be used to fit a neutrino flux to. In the end, the
resulting flux will include the experimental uncertainties and correlations. For this method to work, one
needs at least 100 replicas. In all cases the errors are fluctuated with the diagonal of the corresponding
covariance matrix. For the pseudo data, only statistical uncertainties are included and for the FASER
event rate measurements the experimental covariance matrix is used to generate the replicas.
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4.3 Getting Hands-On with the Data: Gauging Uncertainties

4.3.1 Fitting Overall Flux Normalization

In order to test the analysis machinery and to get an idea of how well the overall normalization of
the flux can be fitted. The FASER event rate measurements from FASER and pseudo data generated
using the FASER detector geometry will be used. The pseudo data is generated using EPOS+POWHEG,
where EPOS models light hadron production and POWHEG charmed hadron production. In Section 5, as
short description of the event generator EPOS will be given. The first exercise to consider is to produce
a fit using the following equation:

fνi(Eν) = A × f ref
νi
(Eν), (4.3.1)

where f ref
νi (Eν) is the neutrino flux used to compute the pseudo data. As one can see, this equation

is designed so that A ≈ 1, thus one might call this a trivial fit, which would not be far from the truth.
We will consider two scenarios:
Fitting Using Identity FK-table
First a fit is performed where the assumption is made that the FK-table is an identity matrix, thus
the event rates are related to the flux by:

N
(νi)

int (Eν,j) = fνi(xν,j)∆Eν,j i = 1, . . . , nEν , (4.3.2)

where ∆Eν,j is the binwidth in the neutrino energy. This fit comes down to constraining the normal-
ization A using the number of events. The SCIPY1 library is used to perform the fit and is in charge
of minimizing the χ2. For this fit, 100 Level-1 replicas have been computed using the event rate mea-
surements from FASER. Figure 4.2 shows the result of the fit and tells us how well the normalization
of the flux can be constrained. The resulting fit parameter is A = 1.00± 0.06 and the mean χ2 = 1.67.

Fitting Using FK-table Formalism
In order to test the FK-table formalism the same exercise has been done using pseudo data. In this
case the number of events were related to the neutrino PDF by equation 2.3.15. We have chosen to
bin the pseudo data in the same way as the data from FASER. Because of this, the normalization
parameter fitted for the muon neutrino PDF and anti-neutrino PDF is the same. Both PDFs are then
convoluted with their corresponding FK-table after which the number of events in the [1000,1900] GeV
bin is added together. The result of this level 2 closure test can be seen in figure 4.3. This Figure
shows the FK-table formalism is working properly, because the convolution of the neutrino PDF yields
the event rates within uncertainty. The resulting fit parameter is A = 0.97 ± 0.04 and the mean χ2 =
2.38. The neutrino PDF from the fit is lower than the reference neutrino PDF because this specific
instance of the level 1 data is on average smaller than the level 0 data.

4.3.2 Extension of Fitting Overall Normalization

Because the previous analysis was successful on all fronts, we can move on to an extension of the
previous exercise. In this case the fitting machinery is extended to fit possible deviations in small-
and large-xν limits of the neutrino fluxes. In this case the fit equation is given by

fνi(Eν) = A × xb−1
νi
(1 − xνi)

c−1 × f (ref)
νi
(Eν) , (4.3.3)

1https://scipy.org
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Figure 4.2. A level-1 closure fit probing the uncertainty of the normalization of the flux using equation 4.3.1.
100 replicas of the FASER data were computed and fitted. The normalization parameter was determined at
a value of A = 1.00 ± 0.06 and the mean χ2 = 1.67. The normalization error falls in between the errors on the
event rate measurements.
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Figure 4.3. A level-2 closure fit probing the uncertainty of the normalization of the muon neutrino flux(left
plot), and the anti-muon flux(middle plot), using equation 4.3.1. 100 replicas of the simulated data were com-
puted and fitted. The normalization parameter was determined at a value of A = 0.97±0.04. The normalization
error falls in between the errors on the event rate measurements. In the upper right and the upper middle plots,
the blue line is below the green and the red line. In the bottom left and bottom middle plot, the blue line is
below the red line, because the level 1 data is on average smaller than the level 0 data in this instance.
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Figure 4.4. A level-1 closure fit probing the uncertainty of the flux using equation 4.3.3. 100 replicas of the
FASER data were computed and fitted. The uncertainties of the fit correspond to the uncertainties of the data.
This fit shows that a NN is needed to fit the neutrino flux well, since only the preprocessing function itself is
not flexible enough.
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Figure 4.5. A level-2 closure fit probing the uncertainty of the muon neutrino flux using equation 4.3.3. 100
replicas of the simulated data were computed and fitted. The uncertainty on the event rates is similar to the
normalization fit. For the neutrino PDF plot, one can see that the input neutrino PDF is obtained in regions
where there is data, and that there is a large uncertainty in the region where there is no data. The χ2 of this
fit is lower compared to the normalization fit.

where by design the coefficients take the values: A = 1 = b = c in a level-0 closure test. The SCIPY
library did not succeed in producing low χ2 fits, several minimization methods were tried, but none
of them yielded stable results. This is why, instead of SCIPY, the Adam optimizer was used. This
optimizer yielded more stable results and lower χ2s. The FK-table formalism will also be used to fit
the event rate measurements from FASER, since it was deemed successful in the normalization fits.
The results of level-1 closure test using event rate measurements from FASER can be seen in figure
4.4. It can be seen that the fitted flux is higher compared to the input flux, because the event rate
measurements of FASER do not exactly correspond to pseudo data of course, but are higher, as can be
seen from Figure 3.4. When looking at the right panel, this fit seems worse than the normalization fit.
However, this is because the fit formula itself does not have enough flexibility(parameters) to fit the
data well. This one of the reasons why a machine learning approach is used in this work. The result of
the fit using pseudo data where the event rates and the neutrino PDF are related by a FK-table can
be seen in Figure 4.5. Again, the uncertainties of the fit can be reasonably constrained and fall within
the errors and the data. The parametrised neutrino flux reproduces the input flux in the region where
there is data. The mean χ2 = 1.18, which is, as expected, lower compared to the normalization fit.
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4.4 Gauging Uncertainties with Machine Learning Machinery

After gauging the normalization and overall uncertainties and testing the FK-table formalism, we move
on to the ML fit. As mentioned above, the preprocessing function alone is not enough to accurately
constrain the neutrino fluxes. To test the ML machinery, we start by considering an identity FK-table,
thus directly fitting to the number of events. Because no neutrino PDF is convoluted in this case, no
preprocessing function is involved.

4.4.1 Settings for ML parametrisations

For all ML parametrisations a similar stopping algorithm is employed as is done in the NNPDF
framework. A graphical representation can be seen in Figure 4.6. The general idea of the stopping
is to stop the training when the validation loss stops decreasing. When the validation loss stopped
decreasing a patience algorithm is employed to make sure the training is not stopped to early by
waiting a number of iterations to see if the loss is not decreasing further. In this work, enough data
is not always available to split data into two sets, in these cases the validation loss is substituted by
the training loss. In this work, the positivity constraint is employed by using the Softplus activation
function after the final layer, whereas in NNPDF this constraint is implemented into the stopping
algorithm.
ML FASER Event Rate Fit In order to get a reasonable parametrisation, one has to construct a
well-performing NN. This is done by trying several number of hidden layers, number of nodes per layer,
learning etc. It is very much a matter of trying and experimenting, engineering if you will, to get a NN
which properly trains. To fit the event rates measurements from FASER without FK-tables, a simple
1-2-2-2-1 MLP is used, which includes 19 free parameters including 7 bias parameters. These are more
than enough parameters to fit 6 points. Initially many more parameters were used, but the NN had
a hard time converging. After realising the NN would probably not need many parameters to for 6
points, a smaller NN was used. A level-1 closure fit is performed using the event rate measurements
from FASER. For this case, two separate networks are trained for the event rates coming from muon
and anti-muon neutrinos. Both networks used the Adam optimizer with a learning rate of .001 and
also the stopping algorithm was employed. The result of the fit can be seen in Figure 4.7. As can
be seen from the plot, the uncertainty from the fit overlaps almost perfectly with the uncertainty of
the data, confirming that the MC replica method is doing its job. This Figure also shows the NN can
fit the data well. Both fitting using the FK-table formalism, as was shown before, and ML fits were
successful, thus now one can move on to the full-fledged ML parametrisation of the data using the
FK-table formalism.

4.5 ML Parametrisations: From Pseudo Data to FASER Event Rate Measure-
ments

The main goal of this work is of course to parametrise the neutrino flux using ML and the FK-table
formalism. First, to verify that the ML model is doing a proper job, pseudo data is used to make sure
the input flux is recovered.

4.5.1 Why Not Implement Fitting Neutrino Fluxes in the NNPDF Framework?

The first approach to parametrising the neutrino flux was using the NNPDF framework. However,
we quickly came to the conclusion it was better to write our own stand-alone code. This is because
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Figure 4.6. This shows how the stopping algorithm employed in the ML training works. Basically, the neural
net is trained as long as the loss decreases. If the loss did not decrease, a patience alogorithm is employed to
make sure the training is not stopped too early. The positivity constraint is employed by the activation function
in this work.
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Figure 4.7. This Figure shows a parametrisation using an identity FK-table. As can be seen, using a level-1
closure test, the event rate measurements from FASER and its uncertainties can be reproduced, thus confirming
that the MC replica method is working. A simple MLP was used (1,3,3,3,1) alongside ReLU activation functions
and L2 regularisation.

32



NNPDF is simply not designed to be used for any other purpose than fitting PDFs. The NNPDF
framework is a very useful code for fitting PDFs, but because of this it contains a lot of unnecessary
and unfitting code for parametrising neutrino PDFs. For example, the framework contains several
PDF bases and rotations, which is a great asset for parametrising PDFs, but this is quite inefficient
and abundant for this purpose. One could potentially overcome this barrier by implementing a trivial
neutrino PDF basis, but this would be only one of many duct tape fixes needed. Therefore, it is
much more efficient to write our own code whilst relying heavily on the relevant parts of the NNPDF
framework.

4.5.2 Complete ML Model and Parametrising Pseudo Data

Complete Description ML Model After deciding to write a stand-alone code, the focus shifted
to parametrising the pseudo data. First a level-0 closure test was performed to test the performance
of the model and thereafter a level-2 closure test is performed. In this work the python package
PyTorch2 is used to construct the ML model. After playing around with several model configurations
e.g. number of layers, number of nodes per layer, learning rate, activation functions, optimizers and
setting up the framework a successful level-0 closure fit was produced for the simulated data. In the
preprocessing function, equation 2.4.1, the β parameter was constrained to be positive to ensure the
neutrino PDF would not diverge in the low-xν region. A wide range of initial values were used for
both the NN parameters and the preprocessing parameters, so that the model would explore the entire
parameter space in regions where there is no data to ensure large uncertainties in those regions. For
all fits a minimum of 100 replicas was used to ensure the uncertainties of the covariance matrix were
correctly propagated into the neutrino flux. In this work a NN of size (1,4,4,4,1) was used, alongside
the Softplus activation function, which is employed after each layer to allow for non-linearities and
enforce positivity. The optimizer used in this work is, as usual, the Adam optimizer combined with
L2 regularisation to ensure the weights of the NN do not blow up and to avoid divergent/non-smooth
behaviour and overfitting. The learning rate, patience, total number of epochs and training/validation
split(if applicable) are determined separately for each fit. This ML model will be used to parametrise
all neutrino fluxes in this work.
Postfit Criteria In the NNPDF framework postfit criteria are imposed to remove certain fits which
are considered outliers relative to the other fitted replicas. These are also imposed in this work. If
for example the χ2 after training deviates more than 4σ from the mean χ2 of all fits, this replica
is removed. In the NNPDF framework several postfit criteria are implemented: χ2, integrability,
positivity and arc length. In this work, the postfit criteria are based on the χ2, and not on the other
criteria because those are already enforced using different approaches e.g. activation functions and
weight decay.
Results Parametrisations Pseudo Data In Figure 4.8, a level 0 closure fit for the (anti-)muon
neutrino PDF is shown. The result of this fit tells us the model is working correctly, as it reproduces
the input flux from the simulated data. Also, the neutrino PDF is showing physical behaviour by
going to zero in low- and high-x regions and displaying large uncertainties in dataless regions. For
all the fits in this work, the uncertainties grow in the low- and high-x regions due to the lack of data
(constraints) in those regions, which the fit is reflecting.

2https://pytorch.org
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Figure 4.8. This Figure shows a successful level 0 closure test for the muon neutrino. In this plot event rates
are generated using the FASER neutrino PDF. The neural net reproduces this input flux. Both the FK-table
formalism and a small (1,3,3,3,1) MLP was used, alongside the Adam optimizer including L2 regularisation.

After getting a confidence boost from this parametrisation, the level-2 closure fits can be computed.
From Figure 4.9, it can be seen that, once again, the closure test passed with flying colours. The
input flux and the data is reproduced within the 1σ error bars and the neutrino PDF shows physical
behaviour in the asymptotic regions.
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Figure 4.9. Same as Figure 4.8, however a level 2 closure test is performed instead of a level 0 closure test.

4.6 Extracting Neutrino Fluxes From FASER Event Rate Measurements

Now that we have established that the ML model works as intended, because it can reproduce the
input flux within uncertainties and fit the event rates correctly, lets move on the pinnacle of this work:
parametrising the (anti-) muon neutrino PDF to event rate measurements from FASER using the
FK-table formalism and a feed-forward NN. Because the FASER experiment could not discriminate
between neutrinos and anti-neutrinos at energies above 1000 GeV, the NN parametrising the flux
contains two output layers, meaning the neutrino and anti-neutrino flux were fitted at the same time
by a single NN. For this fit a 1-4-4-4-2 network was used alongside the Softplus activation function to
keep the flux smooth, a weight decay of 1e-3, a patience of 100 and a total number of 2000 epochs.
It was found that these settings made sure that both flux was smooth and the event rates were
recovered within uncertainties. The result of this level-1 closure test can be seen in Figure 4.10. This
plot shows the comparison between the NN fit and the FASER data. This is the first time the full
Eν dependence on the muon neutrino flux is constrained. The event rates are binned in Eν and
leptonic charge q and the uncertainties correspond to 1σ. The uncertainties are correctly propagated
through the MC method, since the uncertainties from the fit correspond to the uncertainties on the
event rate measurement. It can be seen that the muon neutrino flux is higher than the flux from

34



10−3

10−2

10−1

100

101

102

103

xf
(x

)

fEPOS + PWG (x )
fNNflux (x )

10−3

10−2

10−1

100

101

102

103

xf
(x

)

fEPOS + PWG (x )
fNNflux (x )

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
in

t
/b

in
wi

dt
h

[1
/G

eV
]

DATA E
FK fNNflux
FK fEPOS + PWG

10−3 10−2 10−1 100

x

0

1

2

Ra
tio

10−3 10−2 10−1 100

x

0

1

2

1
100

1
300

1
600

1
1000

1
1000

1
300

1
100

q/E [1/GeV]

0

1

Ra
tio

FASER arXiv 2412 : 03186, pp = 65.6fb 1

Figure 4.10. This plot shows the muon neutrino flux obtained using the FASER 2024 event rate measurements
of [3]. It can be seen that the NN prediction is reproducing the uncertainties of the data in the rightmost plot.
In the left and in the middle plot the parametrised flux is compared to the POWHEG+EPOS flux. In the right
panel, also the event rates prediction by POWHEG+EPOS are shown for reference and completeness.

EPOS+POWHEG and thus that the method presented in this work is a significant improvement compared
to the EPOS+POWHEG prediction. The neutrino PDF from the fit is between 20% and 40% larger than
the EPOS+POWHEG flux and agrees within the fit uncertainties in almost the entire xν range.

4.7 Hyperparameters

The settings for the neural net described above were capable of producin satisfactory level-0, level-1
and level-2 fits. In this subsection, the rationale behind the neural net structure will be explained.

• Preprocessing function. As mentioned in the theory section the preprocessing function is
used to make sure the neutrino PDF goes to zero in high- and low-x regions and to increase
computational efficiency. In the closure test above, very few data points are available to train the
NN on, and that is why the preprocessing function is also serving as a tool to get stable results.
Since data is only available in a very limited x-range one should expect the parametrised flux
to have large uncertainty in the large regions where there is no data at all. The preprocessing
function in this work is used to explore the entire parameter space and can thus yield the
expected uncertainty of the neutrino PDF in regions where there is no data. This can be seen in
Figure 4.9 and can be achieved by varying the initial parameters of the preprocessing function
sufficiently. When only using a NN, it is very hard (impossible) to create a NN which goes to
zero in low- and high-x regions, displays large uncertainties in regions where there is no data,
does not overfit, is computationally inexpensive and produces converged χ2 values. An attempt
to create large uncertainties can be seen in Figure 4.11. To generate this plot, a large NN was
used and the initial parameters of the NN were also varied 10 times as much as the default
option. An uncertainty band can be seen, but it is not as large as it should be, because this
plot seems to know for sure the neutrino flux is in the shaded region. However, there is no data
in that region. When further increasing the size or the initial parameters or using a different
activation function the result either would not change, or the data would not be fitted correctly
anymore.

• Activation functions In this work the Softplus activation function is used for a number of
reasons. First of all the neutrino flux should be positive and the Softplus activation function,
which is given by f(x) = 1

β ∗ ln(1+ exp(β ∗x)), ensures that negative values are mapped to very
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small values i.e. the Softplus is a smooth version of the Relu activation function which is given
by f(x) = max(0, x). Because the neutrino PDFs need to be smooth, the Softplus activation
function was found to be more suitable, although the Relu activation function is also capable
of producing a successful closure test. This can be seen in Figure 4.12. Also, since the values
of the neutrino PDFs are not between [-1,1], activation functions such as Sigmoid and Tanh are
not suitable. Not only because of the range, but also because of the vanishing gradient problem
are these activations functions not suitable for deep neural networks.

• L2 regularisation. L2 regularisation is a sensible feature to implement and a no-brainer,
because it discourages large weights in the NN. This feature helps to avoid overfitting, makes
sure the output of the NN is smoother and does not diverge in regions where there is no data
and thus also helps in making the parametrisation more physical correct.

• Learning rate and the training length The learning rate and the size of the NN do not
have a large effect in this work on the outcome of the fit. Generally, a larger learning rate
causes faster, but also more unstable convergence of the loss. A smaller/larger learning rate is
accompanied by more/less patience and epochs.

• Size of the NN In this work, relatively small NNs are used to parametrise the data, because the
complexity of the neutrino PDF is low. Larger NNs could be used in this work, but this would
only result in a slower convergence, more overfitting and an increase of dead neurons (neurons
which are not contributing to the learning process because their weights are not updating due
to redundancy).

• Runcards For all the fits computed in this work a separate runcard is used. In these runcards,
one can specify the model architecture, hyperparameters(patience, learning rate, number of
layers etc.), if one wants to use postfit measures/criteria etc.

• Hyperparameter optimization In this work the size of the datasets were not large (the largest
dataset consisted of around 250 datapoints). Because of this a hyperparameter optimization al-
gorithm was not used to find the combination of parameters which yielded the best fit quality.
Instead hyperparameter optimization was done by trying a couple of combinations of parame-
ters, usually after which the fit quality was up to our standards. NNPDF has implemented a
hyperoptimization algorithm to find the best parameters for the learning of the NN. NNPDF
uses a technique called K-folding cross-validation to perform the hyperparameter scan. This
technique makes sure the NN produces a low χ2 on both seen and unseen data, maintains stabil-
ity despite random variations and remains dependable even with a limited number of points. The
core idea of this algorithm is to create partitions, so-called k-folds, of the data. Then, for every
combination of hyperparemeters, k-fits are computed where each time one k-fold is left out. The
partition left out is used to evaluate the performance of the fit using a figure of merit, such as the
hyperparameters which produced the best average χ2 i.e. Lhyperopt = 1

Nk
∑χ2 [15, 28]. Figure

4.13 shows a neat overview of this algorithm from NNPDF. Bayesian optimization is employed
to find the set of hyperparameters which yield the lowest χ2. In principle, one can also employ
another NN to find the best set of hyperparameters, however in practice Bayesian optimization
is found to be computationally less expensive and well suited to find a minimum[43]. This hy-
peroptimization algorithm is also implemented in this framework and can be used to find the
best set of hyperparameters.
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Figure 4.11. This Figure shows a fit to the FASER event rate measurements using a large NN (7 hidden
layers, with 7 nodes per layer). The closure test is successful, however the error band is not increasing in regions
where there is no data. Also, the neutrino PDF is not smooth and the fit was computationally expensive. All
in all, the preprocessing function is a very powerful tool which can solve all these issues at once.
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Figure 4.12. This Figure shows a successful level 2 closure test for the muon neutrino fitted to pseudo data.
Instead of the Softplus activation function in Figure 4.9, the ReLU activation function was used. The resulting
neutrino PDF is the same.

Figure 4.13. This is an overview of the hyperparameter optimization algorithm is implemented in the NNPDF
framework[28]. The main idea is to use k-fold cross validation to determine the best set of hyperparameters
combined with Bayesian optimization[43].
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4.8 Assessing the Quality and Stability of the Parametrisations

In the NNPDF framework there are several so-called postfit measures to assess the quality of the fits
[13, 28, 10], which are also implemented in this work. The data used to compute the postfit measures
is ideally not used in the fit itself to make sure the measures are actually useful in telling the quality
of the fits, however, in this work this cannot always be achieved due to the limited data.

• When performing closure tests, the following measure can be computed:

φχ2 ≡
√
⟨χ2[Nfit, D]⟩ − χ2⟨[Nfit], D⟩. (4.8.1)

This measure computes the spread of all replicas in terms of data uncertainty. When fitting
to level 0 data it is expected that all replicas converge(provided enough epochs are employed),
since level 0 data does not contain any fluctuations and the only difference between replicas are
the initial values of parameters of the model. Thus, it is expected that φχ2 goes to zero when
the number of epochs are increased. For level 1 and level 2 closure tests, this quantity can also
be computed with respect to level 0 and level 1 data to quantify the spread between the fitted
replicas.

• When performing a level-2 closure test a specific instance of level-1 data is created (one exper-
iment), however there is nothing holding us back to compute several level-2 closure tests using
different level-1 instances. Actually, to for example get a probability distribution for the follow-
ing postfit measures, one needs to execute several level-2 closure tests with different level-1 data
instances, since these postfit measures are stochastic variables.

• It is to be expected that the average neutrino PDF obtained by level-1 and level-2 fits repro-
duces the input PDF. Thus the χ2 of the average neutrino PDF convoluted with an FK-table
and compared to level-1 data should be approximately the same as the χ2 of the input PDF
convoluted with an FK-table and compared to level-1 data. This is described by

∆χ2 = χ2[D1, ⟨Nfit⟩] − χ2[D1, Ndata]
χ2[D1, Ndata]

, (4.8.2)

and is a quantitative measure of how close the result of the closure fit is to the theoretical
prediction (a measure of how successful the fit is). It is designed such that a ∆χ2 of 0 corresponds
to perfect learning of the underlying law, ∆χ2 < 0 to overlearning i.e. also fitting noise and
∆χ2 > 0 to underlearning.

As mentioned above, an expectation value of this measure can be computed across different
level-1 shifts i.e.

∆χ2 = 1
Nfits

fits
∑
j=1

χ2[Dj
1, ⟨N j

fit⟩] − χ2[Dj
1, Ninput]

χ2[Dj
1, Ninput]

. (4.8.3)

• Another measure to measure the success of a level-2 closure fit is the accuracy which is given by:

ξnσ =
1

Nx

1
Nfits

Nx

∑
j=1

Nfits

∑
l=1

I
[−nσ

(l)
fit (xj),nσ

(l)
fit (xj)]

(⟨f (l)fit (xj)⟩ − fin(xj)) . (4.8.4)

This measure was created so that one can assess the accuracy of the uncertainties of the fitted
neutrino PDFs with respect to the input neutrino PDF. The idea is that the the values of the
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input neutrino PDF fall 68.3% of the time in the one sigma uncertainty band of the fitted neutrino
PDF. So, ξ1σ ≈ 0.68. Again, one averages over several fits in this equation, which means one has
to compute multiple fits each consisting of at least 100 replicas. However, because this can be
computationally intensive an approximation would be to assume the neutrino PDF uncertainties
between different closure test do not vary significantly. Then the accuracy becomes:

ξnσ =
1

Nx

Nx

∑
j=1

I[−nσfit(xj),nσfit(xj)]
(⟨ffit(xj)⟩ − fin(xj)) , (4.8.5)

where the x-points consist of 10 logarithmically spaced points between 10−4 and 0.1 and 10
linearly spaced points between 0.1 and 1. In the equation, ⟨ffit(xj)⟩ and σfit(xj) is the mean
PDF and the standard deviation of the neutrino PDF obtained by the closure fit, respectively.
The factor I[−nσfit(xj),nσfit(xj)]

, is an indicator function. This function is one if the fitted neutrino
PDF evaluated on xj falls within 1σ of the input neutrino PDF, and zero otherwise.

• The final postfit measure implemented in this work is the bias-to-variance ratio. This measure
is implemented to assess the faithfulness of the PDF uncertainties and to see whether the uncer-
tainties of the data are correctly propagated in the uncertainty of the model predictions. Again,
the expectation value of these quantities is computed using different level-1 shifts, however, one
can also compute this quantity for a single level-2 closure test. The bias is defined as:

bias = 1
Nrep

1
Ndat

∑
k

⎡⎢⎢⎢⎢⎣
∑
ij

(⟨Nk
rep⟩ −Ninput)i C−1

ij (⟨Nk
rep⟩ −Ninput)j

⎤⎥⎥⎥⎥⎦
, (4.8.6)

and represents the difference between the mean predictions of the model and the theoretical
predictions in units of the covariance matrix. The variance is given by:

variance = 1
Ndat

1
Nrep

∑
k

⎡⎢⎢⎢⎢⎣
∑
ij

(⟨Nrep⟩ −Nk
rep)i C−1

ij (⟨Nrep⟩ −Nk
rep)j

⎤⎥⎥⎥⎥⎦
(4.8.7)

and signifies the fluctuations of each fitted replica with respect to the mean prediction in units
of the covariance matrix i.e. how much each fitted replica differs from the mean prediction.
Now, when dividing the bias by the variance, this creates a measure which tells one how well the
uncertainty of the data is propagated to the PDF predictions and checks if the average distance
between the mean prediction and the theoretical prediction is the same as the variance across
replicas. Thus if

bias
variance

= 1, (4.8.8)

it means the uncertainties of the fitted neutrino PDFs are ’faithful’ and can thus be trusted.

Now the postfit measures of the fit shown in Figure 4.9 can be computed to assess the quality of the
fit. From Table 1 it can be seen that most postfit measures are indicating that there is some degree
of overfiting. However, considering there are 6 data points it is hard to make a distinction between
fitting the noise and fitting data. One can be certain about one thing: the model is accurately fitting
the data. The accuracy metric is indicating the accuracies of the input PDF are correctly reproduced.
Besides computing these postfit measures, several level 2 closure tests with different level 1 instances
are also executed to see if this will reproduce the level 0 data. Figure 4.14 shows a comparison between
the flux from a level 0 closure test, the underlying flux used to generate the pseudo-data and the mean
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Estimator Value

∆χ2 −0.88

ξσ 0.67

⟨TL⟩rep 1924

⟨χ2
tot⟩rep 0.65

φ2
χ2 5.03
bias

variance 0.12
Table 1. The postfit estimators corresponding to a single level 2 closure test displayed in Figure 4.14. ⟨TL⟩rep
is the average training length.
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Figure 4.14. Left and middle plot: comparison between the flux from a level 0 closure test, the underlying flux
used to generate the pseudo-data and the mean flux of ten level-2 closure tests using different level 1 instances.
The fluxes from the closure test are obtained by fitting to the same pseudo data as was done above. The
bottom-left and bottom-middle panels display the ratio between the fitted and input fluxes, where the bands
indicate the 68% CL interval in the extracted fluxes. Right: comparison between the input pseudo-data for the
Nint distributions as a function of q/Eν entering the closure test with the predictions based on the fitted fluxes
and the convolution of the fitted fluxes and the FK-table. For the input pseudo-data, uncertainties are assumed
to be purely statistical. For the theoretical predictions, the error band is the 68% CL range evaluated from the
Nrep = 100 Monte Carlo replicas.

flux of ten level 2 closure tests using different level 1 instances. The fluxes from the closure test are
obtained by fitting to the pseudo data. The bottom-left and bottom-middle panels display the ratio
between the fitted and input fluxes, where the bands indicate the 68% CL interval in the extracted
fluxes. The right panel of the plot shows the comparison between the input pseudo-data for the Nint

distributions as a function of q/Eν entering the closure test with the predictions based on the fitted
fluxes and the convolution of the fitted fluxes and the FK-table. From Fig 4.14, it can be seen that
the average over several level 2 closure tests with different level 1 instances agrees with a level 0
closure test. This is as expected, since several level 2 closure tests can be seen as a level 0 closure test.
Another expectation which should be verified is the one of homogeneity between level 2 closure tests.
To verify this expectation, two plots have been produced, which can be seen in Figure 4.15 and 4.16.
From these Figures, it can be seen that the χ2s are fluctuating around 0.4 and the relative uncertainty
barely fluctuates in the xν-region where there is data. All in all, the Figures show the closure tests
are successful and yield stable results.
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Figure 4.15. This plot shows the χ2s for several L2 closure tests with different level 1 instances. The χ2s are
computed between the mean prediction and the corresponding level 1 data instance.

10−5 10−4 10−3 10−2 10−1 100

x

0

1

2

3

4

5

6

7

8

T
<

T
>

re
p

pseudo data, 10 level 1 instances

Figure 4.16. This plot shows the relative uncertainties for several L2 closure tests with different level 1
instances. The relative uncertainty is given by σL2 fits

⟨L2 fits⟩ . It can be seen that the variance in neutrino PDFs
between several level 2 closure tests is low in regions where there is data.
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5 Applying the Numerical Framework to Forward Particle Produc-
tion at the LHC

Now that we a data-driven parametrisation of the neutrino flux using event rate measurements from
FASER is performed, the framework presented above can be applied to several applications. First
of all, the determination of the LHC neutrino fluxes can be used to constrain models of forward
hadron production, since LHC neutrinos are primarily decay products from pions, kaons and charm
hadrons. Forward hadron production is a process which produces hadrons in the forward region
after a proton-proton collision i.e. at small angles with respect to the beam line. As mentioned in
the introduction, constraining models of forward hadron production is a way to understand QCD in
the small-x regime and can contribute to improved predictions for the neutrino telescopes looking
for prompt neutrino fluxes. In this section it will be shown that by parametrising neutrino fluxes,
certain models are disfavoured. Not only fluxes from different generators are compared, also fluxes
from different detector geometries and kinematic observables are compared, which can tell us about
the suitability of the kinematic observables and the several detector geometries. Another application
of the framework that was researched, is looking at BSM enhanced decays of neutral mesons into
neutrinos and comparing these BSM scenarios to SM scenarios for several detector geometries. The
final application considered is the effect of the charm quark in the proton on the for of neutrino fluxes.
For all applications, the constraints that FASERν(2) can provide on the fluxes is also researched.

5.1 Testing Forward Event Generators and Detector Geometries

In this section the framework developed will be applied to test several forward event generators for
several detector geometries for several kinematic observables (Eh.Eℓ, Eν , θ).

5.1.1 Detector Geometries

Several detector geometries will be considered to analyse the potential to constrain neutrino fluxes for
current and proposed detectors. The following detectors will be considered:

• FASER 2024 This detector geometry was used to measure the event rates presented in [3]
with an integrated luminosity of 65.6fb−1. The geometry of this detector consists of a cylindrical
fiducial volume with a radius of 10 cm and a depth of 88.5 cm of tungsten.

• FASERν at Run 3 This detector uses the FASERν emulsion detector to measure neutrinos
and it has dimensions of 25 cm x 30 cm x 80 cm of tungsten. The integrated luminosity at the
end of run 3 is expected to be around 150 fb−1.

• FASERν at High Luminosity LHC The FASER experiment will continue to take data during
LHC run 4, meaning we also consider the FASERν detector in the high luminosity area meaning
an integrated luminosity of 3 ab−1

• FASERν2 If the proposed FPF will take place, there will be a FASERν2 detector, which will be
sensitive to many more neutrinos because of its larger size. This experiment will be located 620
m from ATLAS and have dimensions 40 cm x 40 cm x 6.8 m. Since this experiment is designed
to detect neutrinos in the high luminosity, an integrated luminosity of 3 ab−1 is assumed.
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5.1.2 Event Generators

Several different QCD models will be considered and, using the parametrisation of the neutrino PDF
computed in the previous section, improved predictions will be derived. In the literature there are a
range of Monte Carlo generators available which are used to simulate and describe forward hadron
production. Using these models one can generate several neutrino fluxes for different detector ge-
ometries. These fluxes are then compared to the neutrino flux obtained in the previous section from
event rate measurements from FASER. In doing this comparison one can constrain and thus disfavour
certain models of forward hadron production. Besides comparing the models to the neutrino flux
parametrisation using the FASER measurements, they will also be compared to each other for several
detector geometries and kinematic observables. A range of Monte Carlo generators and theoretical
models are used to describe and simulate forward hadron production, depending on the physics focus.
Here’s a breakdown:

• EPOS-LHC [44] stands for Energy conserving quantum mechanical approach, based on Partons,
parton ladders, strings, Off-shell remnants, and Splitting of parton ladders. EPOS is an MC event
generator for hadronic interactions and can model both heavy ion interactions and cosmic ray
collisions. EPOS uses both a parton based description i.e. simulating parton interactions as
well as parts of the Regge theory. EPOS uses a so-called Parton-Based Gribov-Regge Theory,
which is an effective theory. The main idea of this theory is that the elementary interactions are
described by so-called Pomeron exchanges. Pomerons represent elementary interactions and is
a phenomenological object in the Gribov-Regge theory. Contrary to this theory, EPOS’ energy
conservation is considered in calculations of cross-sections and hard-processes are implemented
in a natural way compared to the parton model.

• QGSJET 2.04 [45] is an acronym for Quark-Gluon String model with JETs and is, similarly to
EPOS, also based on the Regge theory and was created to have a framework which can reliably
compute interactions at energies above collider energies. Also in the QGSJET Pomerons represent
the elementary interactions. The Quark-Gluon string comes from the fact that QGSJET in the
process of a proton-proton collision two quark-gluon strings form. This is because the protons
in the collision are modeled as consisting of a quark and a diquark. In the collision the quark
from one proton interacts with the diquark of the other proton and vice versa. This process then
leads to the formation of two quark-gluon strings.

• Sibyll 2.3d [46] (no acronym) is an event generator which was created to accurately simulate
high energy cosmic ray cascades based on a physical model. Similarly to QGSJET and EPOS it
uses the Regge theory, however, Sibyll is based on the dual parton model using the minijet
and Lund models. The details of these models do not fit the tone of this thesis and, for the
interested reader, explanations of these models can be found in the literature.

• DPMJET 2019 [47] (Dual Parton Model JET). DPMJET is based on the Dual Parton Model
(DPM), which itself is grounded in Regge theory. Similar to EPOS and QGSJET, the model uses
Pomeron exchanges to represent elementary interactions. In the DPM framework, each Pomeron
corresponds to a colorless exchange leading to the formation of two color strings, which then
hadronize into observable particles. DPMJET extends the basic DPM formalism by including
multiple scattering processes and the treatment of both soft and hard interactions.

Different parts of the event generation are modelled by different MC generators depending on the
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physics. The light hadron production is the dominant component of particle production in high-
energy collisions and the production of the charm quarks are heavier and less abundant, but crucial
for certain types of neutrino flux, like prompt neutrinos. The generators mentioned above will be used
to simulate the production of light hadrons and SIBYLL 2.3d and DPMJET 2019 will also be used to
model forward charm production. For QGSJET 2.04 and EPOS-LHC, the event generator POWHEG will
be used to model the production of charm hadrons matched with the PYTHIA 8.3 [48] parton shower.
In short, pseudo will be computed for the following models:

• EPOS(π,K)+POWHEG(c)

• QGSJET(π,K)+POWHEG(c)

• Sibyll(π,K,c)

• DPMJET(π,K,c)

and for the following detector geometries:

• FASERν2

• FASERν at High Luminosity LHC

• FASERν at Run 3

• FASER 2024

FK-tables will be generated for four observables: Eh, El, Eν , and θ. Using these four observables one
can parametrise four fluxes and compare them to each other to assess the relative suitability of each
observable.

5.1.3 Updated Methodology

Training/Validation split Up until this point the number of data points that the neutrino flux is
fitted to was very limited, thus also limiting the machine learning techniques that were implemented.
Fortunately, the number of events drastically increases to about O(102) for the detector geometries
with an integrated luminosity of 3 ab−1. This means one can split the dataset into a training and a
validation set, which is critical to avoid overfitting when using ML on large(r) datasets. In this work,
a validation set of 10% is used for the high luminosity detector geometries. As a consequence the
validation loss is used in the stopping algorithm, instead of the training loss used previously. Also the
postfit measures are computed using the validation set instead of the training set.
Fitting electron fluxes The FASER experiment could distinguish scattering events coming from
µ and µ̄ neutrinos up to 1000 GeV. However, distinguishing between electron and anti-neutrinos is
impossible, because their decay products in terms of showers look exactly the same. For the fits muon
neutrino fits µ and µ̄ were fitted in one network, but were considered separate. In order to fit the
electron neutrino flux and in order to stay true to the event rate measurements from FASERν in the
future, it was decided to fit fνe + fν̄e instead of fitting them separately, and thus make the assumption
fνe+ν̄e = fνe + fν̄e . The event rates therefore contained both the neutrino and anti-neutrino scattering
events. The output of the NN was convoluted with a combined (summed) FK-table. The plots below
thus show the combined neutrino PDF of the (anti-) electron neutrino.
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Figure 5.1. The results of the determination of the muon neutrino and antineutrino PDFs, xνfνµ(xν), from the
FASER 2024 measurements of the event yields binned in Eν , where the band indicates the 68% CL uncertainties.
The results of the fit are compared with the predictions based on four different fluxes as discussed above
EPOS+POWHEG (baseline flux in [3]), DPMJET 2019, QGSJET+POWHEG and SIBYLL. The middle panels indicates the
pull between each of these four flux predictions and the fit results, see text for more details. The bottom panels
indicated the relative error of the fit result.

5.1.4 Comparison Neutrino Flux from FASER Event Rate Measurements to MC Event
Generators

The neutrino PDF that was extracted using the FASER event rate measurements for muon neutrino
scattering can be compared to the several forward hadron production models, which are described
above. This Figure can be seen in 5.1. The upper panel shows that the uncertainties on the flux is
around 25%, corresponding to the uncertainties on the FASER event rate measurements. The bottom
panels show how many sigmas the models differ from the fit result. It can be seen that all models except
the DPMJET 2019 agree well with the neutrino PDF extracted from the data within uncertainties. The
DPMJET 2019 model diverges from the data in the final bin i.e. in xν > 0.2 (Eν > 1)TeV, because
it predicts a much higher rate of neutrinos than what is observed by FASER. From this one can
conclude that the DPMJET 2019 model is disfavoured by the FASER data, however, more event rate
measurements are needed to fully exclude the model. This model treats charm quarks as massless and
because of this, more charms are produced, especially in the forward region. Since most neutrinos in
the forward region are decay products of charmed hadrons, DPMJET displays an excess of neutrinos
compared to the other event generators. From this, it can be concluded that the DPMJET model is less
suitable as an event generator, not only in this work, but also as a theoretical model for the several
neutrino telescopes. Also the SIBYLL model predicts an excess of neutrinos, although this difference
is a maximum of 3σ. This comparison plot is an excellent result considering we are dealing with low
statistics.
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5.1.5 Results Comparison Detector Geometries, Event Generators and observables

In this section, plots will be shown which compare several parametrised neutrino PDFs for differ-
ent detector geometries, event generators and observables. First of all, Figures 5.2 and 5.3 show a
comparison between muon and electron neutrino fluxes obtained from four different observables. It
can be seen that all closure tests are successful, irrespective of the kinematic input. In both plots
the middle panel shows that the Eν observable produces the flux with the smallest uncertainty and
that θℓ produces the ’worst’ fit and the flux with the highest uncertainty. The closure tests for the
θℓ observable are all successful, however it seems that the input flux is not always reproduced. This
makes sense, since Eν is directly related to the input neutrino flux and the lepton scattering angle θℓ

is is only loosely correlated with the Eν dependence on the flux i.e. the fk-table for this kinematic
observable is much less diagonal than for the other kinematic observables. Or, in other words the flux
as a function of the normalized neutrino energy obtained is relatively loosely correlated to the event
rates as a function of the lepton scattering angle. In short, θℓ is not a suitable kinematic observable
to fit the neutrino flux to. The distributions as a function of Eh Eℓ yield comparable uncertainties to
Eν signifying that these kinematic variables have, as mentioned in the introduction, a much stronger
correlation to the neutrino energy.
Figures 5.4 and 5.5 show plots comparing muon and electron fluxes for different event generators for
all four kinematic observables. As showed in Figure 5.1 and mentioned in [3], it can be seen that the
DPMJET 2019 model is incompatible with the other event generators from the bottom panel. In this
panel the Pull between the several generators and the EPOS+POWHEG is plotted, which is defined as:

PGen(xν) =
∣f (EPOS)

νe+ν̄e
(xν) − f

(Gen)
νe+ν̄e

(xν)∣√
σ
(EPOS)2
νe+ν̄e

+ σ
(Gen)2
νe+ν̄e

. (5.1.1)

If the P=1, it means that the two event generators models agree with each other within uncertainties.
This measure can quantify the statistical compatibility between the several fluxes, because it takes
both the fit uncertainty from bith fits into account. From these Figures it can be seen that DPMJET
is incompatible with the other event generators, because a pull up to ∼ 20 can be seen. The highest
pull is seen between xν = 0.1 and 0.6. When future data will be available from the high luminosity
era for either the FASERν or FASERν2 detector geometry, the model will probably be fully excluded
up to several sigmas.
Figures 5.6 and 5.7 show plots comparing the neutrino fluxes for different detector geometries. From
these plots, the projected neutrino PDF for different detector geometries can be seen. It is clear that
the flux increases with a higher luminosity and for the larger FASERν2 detector at the FPF. Because
of this, the relative uncertainty of the neutrino flux drastically decreases i.e. the flux is more accurately
constrained. As mentioned above, this will help to constrain and exclude models of forward hadron
production. These plots also show that the framework again correctly propagates the uncertainties of
the data to the neutrino fluxes.
All these plots show that the neutrino fluxes obtained from the fits reproduce the input fluxes. The
fits are also successful in reproducing the L1 instances of the pseudo data within uncertainties. An
example of a successful closure test is shown in Figure 5.8, where the L1 data and its uncertainties
are recovered. Also, we have verified that several L2 CL using different L1 seeds yield the same result
as a L0 CL. As mentioned above, there are also statistical estimators to further quantitatively assess
the quality of the fit. Table 2 displays the several statistical estimators for three fits, which show the
fits are successful.
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Figure 5.2. These plots compare muon neutrino fluxes obtained from four different observables. The upper
plot compares observables for the FASERν2 detector geometry and the DPMJET 2019 model. The lower plot
compares observables for the FASERν detector geometry and the QGSJET+POWHEG model. The upper panel
shows the neutrino PDFs and the baseline flux used to generate the data. The middle panel shows the ratio
between the baseline and the parametrised neutrino PDF and the lower panel shows the 68% closure test error.
In both plots it can be seen that the Eν observable produces the flux with the lowest uncertainty and that θℓ

produces the flux with the highest observable.
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Figure 5.3. This Figure shows two plots comparing electron neutrino fluxes obtained from four different
observables. The left plot compares observables for the FASERν detector geometry 3 ab−1and the SIBYLL
model. The right plot compares observables for the FASERν detector geometry 150 fb−1and the EPOS+POWHEG
model. The upper panel shows the neutrino PDFs and the baseline flux used to generate the data. The middle
panel shows the ratio between the baseline and the parametrised neutrino PDF and the lower panel shows the
68% closure test error. In both plots it can be seen that the Eν observable produces the flux with the lowest
uncertainty and that θℓ produces the flux with the highest observable.
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Figure 5.4. This Figure shows two plots comparing muon neutrino fluxes obtained from four different MC
generators. The upper plot compares observables for the FASERν2 geometry and the Eh observable. The lower
plot compares observables for the FASERν geometry and the Eν observable. The upper panel shows the fitted
neutrino PDFs for all generators. The lower panel shows the pull between the different fitted fluxes and the
fitted EPOS+POWHEG flux. In the lower panel it can be seen that the DPMJET 2019 model is incompatible with
the other models, because of a high pull.
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Figure 5.5. This Figure shows two plots comparing electron neutrino fluxes obtained from four different MC
generators. The left plot compares observables for the FASERν geometry high lumi and the θℓ observable. The
right plot compares observables for the FASER 2024 geometry and the Eℓ observable. The upper panel shows
the fitted neutrino PDFs. The lower panel shows the pull between the different fitted fluxes and the fitted
EPOS+POWHEG flux. In the lower panel it can be seen that the DPMJET 2019 model is incompatible with the other
models.

5.2 Researching BSM Enhanced Decays of Neutral Mesons into Neutrinos

Another physics application of the framework will be to constrain BSM scenarios with enhanced
branching fractions of neutral hadrons into neutrinos. The branching fractions of these decays in the
SM are quite low compared to the current bounds on the branching ratios. For this decay:

π → νµ + ν̄µ, (5.2.1)

the SM constraint is zero, since the decay is forbidden by angular momentum conservation with
massless left-handed neutrinos. However, when using massive neutrinos, the SM constraint is 1019

times lower than the current bound. Since an increased branching ratio produces significantly more
neutrinos in the forward region at the LHC, the FASER collaboration could improve current constraints
on these BSM decays. Here, we will consider three decays with enhanced neutrino production:

• η → νµ + ν̄µ(νe + ν̄e) BR(η → νe + ν̄e) ≤ 10−4

• η′ → νµ + ν̄µ(νe + ν̄e) BR(η′ → νe + ν̄e) ≤ 6 × 10−4

• π → νµ + ν̄µ(νe + ν̄e) BR(π0 → νe + ν̄e) ≤ 1.7 × 10−6

The branching ratios (BR) are be taken according to the Particle Data Group (PDG) 2024 limit [49].
Figure 5.9 shows the number of interacting neutrinos at FASERν for the several BSM scenarios. It
can be seen that for the electron neutrino flux, a significant contribution from these BSM decays to
the flux can be seen. More specifically, the contribution from the BSM decays even exceeds the SM
contribution around Eν = 3 TeV. This effect would definitely be visible by the FASER experiments,
which could, as mentioned above, improve current constraints on the branching ratios. For the muon
neutrinos the contribution of the BSM decays at high energies is much smaller due to the large
contribution from kaon decays, as was mentioned in the Section 2. The branching ratios for η and η′
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Figure 5.6. This Figure shows two plots comparing muon neutrino fluxes obtained from four different detector
geometries. The upper plot compares observables for the Sibyll generator and the Eh observable. The lower
plot compares observables for the DPMJET 2019 model and the Eν observable. The upper panel shows the
neutrino PDFs and the baseline flux used to generate the data. The middle panel shows the ratio between the
baseline and the parametrised neutrino PDF and the lower panel shows the 68% closure test error. In the lower
panel it can be seen that the relative error decreases for the high luminosity neutrino fluxes.
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Figure 5.7. This Figure shows two plots comparing electron neutrino fluxes obtained from four different
detector geometries. The upper plot compares observables for the DPMJET 2019 generator and the Eν observable.
The lower plot compares observables for the EPOS+PWOHEG model and the Eℓ observable. The upper panel shows
the neutrino PDFs and the baseline flux used to generate the data. The middle panel shows the ratio between
the baseline and the parametrised neutrino PDF and the lower panel shows the 68% closure test error. In the
lower panel it can be seen that the relative error decreases for the high luminosity neutrino fluxes.
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Figure 5.8. These plots show successful L2 closure tests. The events were generated using the DPMJET 2019
model. Both on the level of the neutrino PDF as well as on the level of the event rates, the CL is successful,
since it reproduces the input within uncertainties.
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Estimator Closure Test

FASER 2024 (Eℓ) FASER HL-LHC (Eν) FASERν2 (Eν)

χ2 0.15 0.9 0.73

∆χ2 −0.93 −0.9 −0.98

ξσ 0.67 0.5 0.54

⟨TL⟩rep 3105 13018 14928

⟨χ2
tot⟩rep 1.14 1.9 2.02

φ2
χ2 3.6 4.38 5.56

Table 2. Statistical estimators computed of a representative subset of the closure test studies validating our
fitting methodology and shown in Figure 5.8. In all cases the input neutrino flux used to generate the synthetic
data is the same, namely DPMJET 2019. From both the closure tests and from this Table it can be seen that
the fits are successful.

are about 100 times higher than for π. This explains why there is no significant increase in neutrinos
for the enhanced branching ratio of the decay of pions to neutrinos.
Since the BSM should be clearly visible in the neutrino flux, pseudo data was generated using Figure
5.9 for the FASERν Run 3 detector geometry. The neutrino fluxes were generated using EPOS+POWHEG
in the SM and the three enhanced BSM fluxes were added separately to these fluxes. Then, closure
tests for the electron and muon neutrino PDFs were carried out using this data. Figure 5.10 shows
the results of the neutrino PDFs from the fits for the Eℓ kinematic variable. First of all, it can be seen
that all closure tests are successful, since the input flux agrees with the fitted flux within uncertainties
in regions where there is data in the second panel. It can also be seen that fitted BSM fluxes do
not show a clear enhancement compared to the SM flux, as was expected from Figure 5.9. However,
the electron neutrino flux is clearly several sigmas higher than the SM flux in a large xν region. The
bottom panel shows the pull between the BSM and the SM fit and, from Figure 5.10, it can be seen
that the electron flux has a pull around 4-5σ in the xν region between 0.15 and 0.4 (or between Eν =
1 and 3 TeV) for the η and η′ BSM decays, while the π0 decay agrees with the SM fit. This effect is
even larger for the FASERν detector geometry in the high luminosity era, where a pull of 10 can be
seen for the η and η′ BSM decays. This is because the uncertainties on the neutrino PDFs decrease,
as is shown in Figure 5.11. All in all the parametrised fluxes show that the measurements of electron
fluxes at FASERν can potentially improve the current PDG bounds on enhanced decays of η and η′
mesons into neutrinos.

5.3 The effect of intrinsic charm in Forward D-Meson Production

The final physics application considered in this work is the effect of intrinsic charm in forward D-meson
production. The NNPDF collaboration published a paper [50] in which they fitted PDF sets including
charm. They found that assuming that the production of charmed hadrons at the LHC is dominated
by gluon fusion to charm quarks: g + g → c + c̄, does not hold. The contribution from quark-initiated
processes such as c+g → c+X i.e. an intrinsic charm component, cannot be neglected when PDF sets
including charm are fitted[51]. This contribution from gluon-charm scattering to D-meson production
thus becomes sizeable in the forward region compared to the gluon fusion channel[52]. Here, we obtain
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Figure 5.9. The number of interacting neutrinos at FASERν evaluated with EPOS-LHC. The BSM scenarios,
where the branching ratios of the light neutral mesons (π0, η, η

′) have been taken according to he PDG bounds,
are compared to the SM prediction. It can be seen that for the electron neutrino the BSM scenario has a
significant effect on the number of interacting neutrinos.

an estimate of the sensitivity of FASER to the effect of intrinsic charm in forward D-meson production
using synthetic data. We also try to constrain the charm quark content of the proton by looking at
the parametrised electron and muon fluxes.
Unfortunately the POWHEG framework could not be used to generate events including intrinsic charm,
since charm is not included in the initial state. This is why in this work the forward neutrino production
from the g + c channel from [53] is added to the POWHEG+EPOS predictions of [54]. Because this section
is used to explore a rough estimate of the sensitivity of FASER to intrinsic charm, this approach will
do for now. However, when comparing to experimental data from FASER it is important to do a
proper job and use NLO calculations to account for intrinsic charm.
Figure 5.12 shows the number of neutrino charged current interactions for the FASERν(Lpp = 3 ab−1)
and FASERν2 detector geometries for electron and muon neutrinos. Again, the baseline flux is gen-
erated using EPOS for light hadrons and POWHEG for heavy hadron production. On top of this the
contribution from Q + g → Q +X [53] is added where the intrinsic charm carries ∼ 1% of the proton’s
momentum. From the plots it can be seen that the expected number of events almost doubles for
electron neutrinos for both geometries in the region around Eν = 1TeV. This effect is smaller for muon
neutrino scattering events, because most muon neutrinos are produced from light hadrons and the
contribution from D-mesons plays a subdominant role in this.
Figure 5.13 shows the fitted electron neutrino PDF to the event rates showed in Figure 5.12 for the
FASERν(Lpp = 3 ab−1) and FASERν2 detector geometries compared to the fitted electron neutrino
PDF without the c + g contribution. In this case the pull is defined as:

PIC(xν) =
∣f (gQ,IC)

νe+ν̄e
(xν) − f

(no gQ)
νe+ν̄e

(xν)∣√
σ
(gQ,IC)2
νe+ν̄e

+ σ
(no gQ)2
νe+ν̄e

. (5.3.1)
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Figure 5.10. These plots show projected neutrino PDFs fitted to event rate measurements which include BSM
enhanced decays of neutral mesons into neutrinos. The event rates used for the fits were as a function of the Eℓ

observable. The EPOS flux is the SM prediction and the lower panel shows the comparison between the fitted
BSM fluxes and the SM flux. For the muon neutrino flux it can be seen that the pull between the BSM flux
and the SM flux does not reach 2. Thus, so no clear excess of muon neutrinos is seen for the enhanced BSM
decays. However, the electron neutrino flux is clearly several sigmas higher (around 4 for the η and η′ enhanced
decays) than the SM flux in a large xν region. 56
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Figure 5.12. These plots show the predicted number of interacting electron and muon neutrinos events at
FASERν(Lpp = 3 ab−1) and FASERν2 when intrinsic charm is included. The baseline flux prediction is computed
using EPOS+POWHEG and the contribution from Q+g → Q+X production is added from [54]. It can be seen that
especially for electron neutrinos intrinsic charm doubles the number of events for both detector geometries.
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Figure 5.13. This Figure shows two plots showing the results for the electron neutrino IC fits.The upper panel
shows the fitted fluxes with and without IC, the bottom panel shows the pull between the fitted IC fluxes and
the non-IC fitted EPOS+POWHEG flux. It can be seen that the pull with respect to the no-IC flux is around 10σ
for FASERν run-3 detector and around 40-60σ for the FASERν detector in the high-lumi era.

where f
(no gQ)
νe+ν̄e

(xν) is the fitted flux using the event rates from EPOS+POWHEG. In the left plot, the lower
panel shows a Pull of around 8 between the fluxes with and without the c + g between 700 and 1500
GeV for all kinematic observables except θℓ, which agrees with the previous observations. The pull
projection is optimistic, since only statistical uncertainties are taken into account. As expected, the
pull increases to around 40-60 for the FASERν2 detector geometry, since the relative uncertainties in
the fitted fluxes decrease. All in all, future data from FASERν at Lpp = 3 ab−1 should be sensible to
intrinsic charm being present in the initial state of the pp.
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6 Code availability
6.1 From physicists’ code to sustainable code

Physicists write a lot of code to solve their problems numerically. These codes are designed to solve a
problem and good code practices are not always taken into account. This is why in this work time has
been spent on trying to write the framework in a user-friendly and future proof way. This was also
done to make sure the framework is flexible enough that future improvements(which are mentioned
below in the outlook) can be implemented relatively easy. After the framework was developed and
all the results were computed using this framework, the code was rewritten so that also other people
could in principle use and add to the code. The code is dubbed NNfluxν and can be accessed here .
On top of this documentation has been written using mkdocs3 and can be read here. On this website,
instructions for installing the code and how to use the code are available. Also, the structure of the
framework is explained and a part of the documentation is written using the docstrings of the classes
and functions used in the code. In short, users can install the code by cloning it from GitHub and the
framework uses poetry to install the required packages. The LHAPDF library needs to be installed
separately, since this is not compatible with poetry or pip. After installing the code, users can generate
pseudo data, or use event rate measurements from FASER/SND@LHC to parametrise neutrino PDFs.
When users want to run a fit, they can specify all the (hyper)parameters in yaml files. The postfit
calculations are also included in the framework as well as the hyperparameter optimization algorithm.

6.2 Code used to produce plots

The git repository that was used to produce all the plots can be found on Github. My code can be
found in the ML_fit_enu/src/ML_fit_neutrinos directory. There are separate directories for all fits
produced in this work and all fits use the same files to for example generate data, perform the fit,
plot the result etc. For each fit a separate control file is made with its hyperparameters, because
these differ per fit. After a fit is performed, the neutrino PDFs, event rates and the postfit analysis
are written to a txt file. A proof that every single closure test produced in this work, also the ones
which are not shown in this thesis, is successful can be found here. All plots comparing generators,
geometries, observables, enhanced BSM decays and IC vs no IC can also be found here.

3https://www.mkdocs.org
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7 Summary and Outlook
7.1 Summary

In this work, a framework is developed which is capable of parametrising neutrino PDFs using machine
learning from neutrino scattering event rate measurements measured at the LHC. The framework is
largely based on the NNPDF framework, which extracts PDFs from measurements on DIS structure
functions. Using the framework, for the first time the full Eν range dependence on the muon neutrino
flux is constrained using neutrino event yields from FASER. This neutrino flux is compared to neutrino
flux predictions computed by several different event generator, which showed that the neutrino flux
extracted from FASER data disfavoured the neutrino flux computed by the DPMJET 2019 model. The
framework is also capable of directly comparing theoretical models for forward hadron production
in proton-proton collisions. To facilitate this comparison, several projections of neutrino fluxes were
made for a combination of detector geometries (both current and future setups) and forward hadron
production models (EPOS,POWHEG,DPMJET,SIBYLL,QGSJET), which showed that the high luminosity
data from the LHC will constrain the neutrino PDF more accurately and that the DPMJET model is
incompatible compared to the other models. The framework was also used to research three different
BSM enhanced decays of neutral mesons into neutrinos. When including BSM decays, the extracted
neutrino flux shows a clear deviation from the SM neutrino flux for muon neutrinos i.e. an increase in
the flux is seen when including BSM decays. The comparioson also showed that the FASERν detector,
especially in the high luminosity era, is sensitive to this effect. Finally, the effect of intrinsic charm
on the neutrino flux was researched by adding gluon-charm scattering to D-meson production. This
showed that the FASERν(2) detector geometries is sensitive to intrinsic charm being present in the
initial state in proton-proton collisions.

7.2 Future Work and Outlook

7.2.1 Tau neutrinos

In this work, projections for muon and electron neutrino fluxes were made. However, tau neutrinos
were not considered, partly due to the lack of statistics, because the neutrino flux of tau neutrinos
is much lower compared to electron and muon neutrinos. However, the framework of course can also
very easily be extended to fit tau neutrino fluxes. Using this framework to fit tau neutrinos is left for
future work.

7.2.2 Rapidity

As explained in the Theoretical Framework, the effect of neutrino rapidity when relating the mea-
surement final state variables to the DIS kinematic variables is assumed to be small for LoS detectors
such as FASER. However, for future work rapidity can and should be taken into account which means
pseudo rapidity will enter the equations given in Section 2. Including rapidity in the equations and in
the framework will make the framework more general since it will also be suitable for data taken by
the SND@LHC experiment, since this experiment is off-axis.
The neutrino flux including rapidity is defined as

d2Nνi(Eν , yν)
dEνdyν

, (7.2.1)
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where yν is the pseudo rapidity defined by equation 2.1.5. The number of neutrino CC scattering
events will then be expressed by four variables: (x, Q2, Eν , yν) and is given by:

N
(νi)

int (x, Q2, Eν , yν) ≡ N
(νi)

int (xmin ≤ x ≤ xmax, Q2
min ≤ Q2 ≤ Q2

max, Emin
ν ≤ Eν ≤ Emax

ν , ymin
ν ≤ yν ≤ ymax

ν ) .

(7.2.2)
The relation between the number of events and the neutrino flux is the given by:

N
(νi)

int (x, Q2, Eν) = ∫
Q2

max

Q2
min

dQ2∫
xmax

xmin
dx∫

E
(max)
ν

E
(min)
ν

dEν ∫
y
(max)
ν

y
(min)
ν

dyν Ñ
(νi)

int (x, Q2, Eν , yν) , (7.2.3)

where the integrand is defined as

Ñ
(νi)

int (x, Q2, Eν , yν) ≡ nT LT ×
d2Nνi(Eν , yν)

dEνdyν
× d2σνiA(x, Q2, Eν)

dxdQ2 ×A(Eℓ, θℓ, Eh) , (7.2.4)

These equations apply for detectors which have access to rapidity such as FASERν2. The FK-table
formalism should then also include rapidity dependence, since the flux is both dependent on rapidity
and neutrino energy. The 2D neutrino PDF is defined as

fνi(xν , yν) ≡
√

spp

2
dNνi(Eν , yν)

dEνdyν
, i = e, µ, τ, (7.2.5)

and in terms of the interpolating functions it is given by:

fνi(xν , yν) ≃
nx

∑
α=1

ny

∑
β=1

fνi(xν,α, yν,β)Iα(xν)Iβ(yν), (7.2.6)

where I are the interpolation polynomials, and xν and yν are the grid nodes. Now the event rates are
given by:

N
(νi)

int (Eν,j , yν,k) = ∫
E
(max)
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E
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×
⎛
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RRRRRRRRRRRRfid
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∑
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∑
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fνi(xν,α, yν,β)FKα,β,j,k (7.2.7)

The FK-table has become a rank-4 tensor, where two indices label the bins in Eν and yν and the other
two indices are labelled by the grid nodes. The expression for the FK-table is given by:

FKα,β,j,k =
2nT LT√

spp
∫

E
(max)
ν,j

E
(min)
ν,j

dEν ∫
y
(max)
ν,k

y
(min)
ν,k

dyν ∫
2mN Eν

Q2
0=1

dQ2∫
1

Q2/2mN Eν

dx Iα(xν)Iβ(yν)
d2σNLO+PS

νiA
(x, Q2, Eν)

dx dQ2

RRRRRRRRRRRRfid

.

(7.2.8)
.
Besides including rapidity in the theoretical framework, it should also be included in the numerical
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framework. Again, when generating pseudo data, the FK-table convoluted with the flux should recover
the event rates within a few percent. The rapidity dependence can also be implemented in the
LHAPDF framework and POWHEG is also capable, when including some minor changes, of producing
event rates as a function of both neutrino energy and rapidity. For the ML fits, the preprocessing
function will not change, because there are no asymptotic behaviours considering the dependence of
the neutrino PDF on rapidity. Considering the structure of the NN, there would be two instead of
one input layers, because there are two vectors of grid nodes. The output of the NN, the neutrino
PDF, would be a 2D object and the number of events in a certain energy and rapidity bin, would be
a matrix instead of a vector. Unfortunately due to lack of time, rapidity is not yet implemented in
the framework. However, in the future it will be implemented by means of a future release.

7.2.3 ML algorithms and the NNPDF framework

The framework presented in this work is based on NNPDF and can produce ML parametrisation
of neutrino PDFs from event rate measurements. It has adopted most features from the NNPDF
framework, however there are still features/algorithms/implementations that are not yet adopted by
our framework, such as:

• First of all, NNPDF fits all separate PDFs together in one MLP. In this work, separate networks
are used for different flavours. This is because currently there are no event rate measurements
for electron neutrinos from FASER or SND@LHC. However, in the future, when this data will
be available, the framework should be adjusted in a way so that all neutrino flavours are fitted
at once.

• PineAPPL[25]. In NNPDF, the library PineAPPL is used to generate fast-interpolation grids and
to convolute the grids with PDFs and the advantage of PineAPPL is its speed of the operations,
since it is written in Rust. Our framework does not yet have an interface with PineAPPL,
however this will be the case in a future release.

• Bayesian reweighing[55]. In NNPDF there is a way to incorporate new data from the LHC to
existing PDF sets using Bayesian Reweighing. One starts off by having N equally likely PDF
sets, before adding the new data. Then, by using Bayes’ Theorem, weights are computed and
using these weights the probability distribution is updated to N reweighed PDF sets. This is
not incorporated into our framework, partly due to the lack of data. However, this method is
an elegant way to incorporate new data into neutrino PDFs without having to redo the NN fits.

• In the future, when there is more data available from FASER and SND@LHC, it would be
possible to combine the NNPDF framework and this framework to fit PDFs and neutrino PDFs
simultaneously. This would be beneficial, because in this way the NN can learn that different
observables, detectors, and kinematic regions put constraints on both PDFs and neutrino PDFs
simultaneously.

7.2.4 Plethora of Physics Applications

In this work several applications to extracting neutrino PDFs from data have been researched. How-
ever, one can think of many more physics applications for this framework such as:
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• With the current neutrino PDF extracted from FASER event rate measurements, one can con-
strain the K-π-swap model of strangeness enhancement. Strangeness enhancement is the phe-
nomenon in which strange particles like kaons and Ω baryons are observed more abundantly in
Pb-Pb collisions than in pp collisions[56]. The K-π-swap model is a model which tries to mimic
this behaviour by creating strangeness enhancement by hadronic rescattering processes. This
model would then also predict a number of neutrinos, which can be compared to the neutrino
flux parametrisation from the FASER data.

• In this work the effect of intrinsic charm on the neutrino production is also investigated. There
are many other possible physics effects that can be researched, for example gluon saturation.
Gluon saturation suggests that the gluon density is no longer growing freely at small Bjorken-x,
which can also have an effect on the number of neutrinos produced from pp collisions. This is
because the forward particle production is sensitive to the small Bjorken-x region of the target
proton.

• Another application that this framework is suited for is to constrain low-x PDFs for charm quark
production. NNPDF has multiple different PDF sets which include different physics and data,
such as LHCb data and PDFs with and without resummation. This framework can compare
several PDFs, because different PDFs yield a different number of scattering events per neutrino
energy.

• DGLAP vs BFKL. DGLAP and BFKL are both equations describing how PDFs evolve with
energy. DGLAP is mainly used for high-x and to describe how PDFs evolve with large Q2,
while BFKL is used in the low-x region and describe how PDFs evolve with small-x[57]. Again,
these two equations will yield different different forward hadron production and will thus yield
a different number of scattering events per neutrino energy. The framework described in this
work, will be able to differentiate the two approaches to evolving PDFs when comparing neutrino
PDFs.

• In the future, when rapidity dependence will be implemented in this framework and when the
neutrino PDF parametrisation including rapidity is also available, the prompt neutrino fluxes
can be predicted for the KM3NET and IceCube neutrino telescopes. The advantage of these
predictions would be their accuracy, since the PDFs display large uncertainties, which also work
through in the production of charm in the forward region and thus in the prediction of these
prompt neutrino fluxes. In short, FASER event rate measurements can, using the framework
presented in this work, actively be used to accurately predict prompt neutrino fluxes for neutrino
telescopes.

7.2.5 Future Data

The numerical framework in this work is build to parametrise neutrino fluxes using event rate mea-
surements from detectors at the LHC. The FASER collaboration has measured event rates for muon
neutrino scattering as a function of neutrino energy [3] and as showed above, this work has, for the
first time, constrained the full Eν dependence on the muon neutrino flux. Currently, and also in the
high luminosity area, FASER will continue to take data. The numerical framework in this work will
be ready to use this data to extract more precise neutrino fluxes for more flavours as has been showed
using pseudo data in Section 5. If the proposed FPF will be build and fully realised, this means even

63



more data and thus even more accurate neutrino flux parametrisations. The fluxes extracted from
event rate measurements can then also be compared to several event generators, as is done in this
work, to further constrain and perhaps fully exclude models. In conclusion, future data from the LHC
promises an exciting and important role for this framework in unravelling QCD and the structure of
the proton.
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